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Abstract

Replacing fossil-fueled appliances and vehicles
with electric versions can significantly reduce
emissions. However, electric heating and vehicle
charging can cause peaks in electricity demand that
stress infrastructure in buildings and power grids,
jeopardizing reliability or forcing costly infrastructure
upgrades. This paper presents the open-source
EDGIE (Emulating the Distribution Grid Impacts of
Electrification) toolbox. EDGIE matches experiment
data from an all-electric home in cold weather. It
can simulate many locations and levels of technology
adoption, and supports optimization and network power
flow simulation. In simulations of a fully electrified
neighborhood during the coldest week of 2019 in New
York City, demand peaks at quadruple today’s summer
peak. Peaks are particularly sensitive to the use of
overnight thermostat set-point reductions and to the
efficiencies of heat pumps and building envelopes.
Optimal vehicle-to-home coordination with flexible
space and water heating reduces peak demand by 35%
and transformer degradation by 99%.

Keywords: Electrification, Distribution Grid, Heat
Pump, Electric Vehicle, Transformer.

1. Introduction

Burning fossil fuels in power plants, residential and
commercial buildings, and light-duty passenger vehicles
causes 54% of United States greenhouse gas emissions
(EPA (2021)). Decarbonizing electricity generation
and replacing fossil-fueled vehicles and appliances
with electric versions could essentially eliminate these
emissions. However, widespread electrification could
cause high peaks in electricity demand, particularly on

the coldest days. These peaks could stress electrical
infrastructure in low-voltage building networks,
medium-voltage distribution networks, or high-voltage
transmission networks. Without infrastructure upgrades
or peak demand mitigation strategies, electrification
could cause voltages to drop below acceptable levels.
It could also overheat power lines or transformers,
risking equipment failures or blackouts. On the other
hand, overly conservative infrastructure upgrades could
cost ratepayers billions of dollars in unnecessary price
increases, disproportionately burdening people in
poverty. Better understanding how electrification might
impact the grid, and how to mitigate those impacts,
could reduce these risks to reliability and affordability.

Several recent studies have explored the potential
impacts of electrification on United States power
systems. Blonsky et al. (2019) estimate that electric
vehicles may use 551 TWh of electricity by 2040,
compared to 1 TWh in 2017. Scenarios modeled
by EPRI (2018) show electrification increasing annual
electricity use by 24–52% over 2015 levels in 2050.
Zhou and Mai (2021) use PLEXOS, commercial
software for power system optimization, to assess the
value of demand flexibility under scenarios with varying
degrees of electrification. They find that demand
flexibility could reduce annual electricity production
costs in 2050 by about 10%. Tarroja et al. (2018) use
HIGRID, a simulation toolbox based on EnergyPlus
prototype models, to assess the impacts of heating
electrification in California. They estimate a 32% peak
demand increase in 2050 relative to 2015. White et al.
(2021) use EnergyPlus to retrospectively model space
heating electrification in Texas in 2016. They find
that peak demand would have increased by 10 GW,
about 14% of the Texas grid’s 2016 peak. Elmallah
et al. (2022) model the impacts of home and vehicle
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electrification on the Pacific Gas & Electric distribution
network in northern California. They estimate $1–10
billion in required distribution grid upgrades between
now and 2050 across a range of electrification scenarios.

While the above studies demonstrate some potential
impacts of electrification on the grid, important
questions remain unanswered. For example, the
above studies focus mainly on regions with relatively
mild winters, such as California and Texas. Grid
impacts in cold climates may differ substantially.
With the exception of Elmallah et al. (2022), the
above studies all focus on the transmission level.
Distribution-level considerations, such as voltage
regulation and transformer degradation, have received
less attention. Other than Zhou and Mai (2021),
the above studies focus mainly on characterizing the
problem, rather than developing solutions. To develop
solutions, it helps to have a simulation testbed that
can quickly run sensitivity analyses to reveal the key
drivers of grid impacts, and that interfaces easily with
optimization software.

This paper introduces an open-source simulation
testbed (https://github.com/priyada7/EDGIE) aimed at
helping researchers investigate these questions. The
testbed, named EDGIE (Emulating the Distribution Grid
Impacts of Electrification), can simulate distribution
networks of varying sizes and topologies in a wide
range of locations and technology adoption scenarios.
It models the thermal dynamics and degradation of
transformers, key distribution grid components. EDGIE
models buildings, space and water heating systems,
and electric vehicle batteries using linear differential
equations that capture their essential dynamics. Solving
these equations analytically reduces simulation to
matrix-vector multiplication, which basic linear algebra
routines can execute very efficiently. This efficiency
enables rapid parameter sweeps and other sensitivity
analyses that can reveal key drivers of grid impacts.
EDGIE also interfaces with packages for convex
optimization and power flow simulation.

Understanding the impacts of winter peak loads
on distribution infrastructure requires accurate models
of component dynamics. EDGIE incorporates models
which include outdoor temperature dependency for
heat pump capacities and coefficients of performance
(COPs), for electric vehicle driving efficiencies,
and for transformer degradation. This means that
for modeling distribution systems under extreme
temperatures, EDGIE can provide a more accurate
picture of component operation compared to existing
testbeds. EDGIE’s space heating models closely match
real data from an all-electric home in very cold weather.

This paper presents the models and input data that

EDGIE uses. It demonstrates EDGIE’s simulation,
sensitivity analysis, and optimization capabilities
through the example of about 1,000 homes in New
York on a very cold week. Under 100% electrification
with air-to-air heat pumps and resistance backup
heating, the neighborhood’s winter demand peaks at
16.6 MW, quadruple today’s summer peak. The winter
peak depends sensitively on the heat pump sizing
approach, on whether people reduce their space heating
temperature set-points overnight, on home sizes and
insulation values, and on heat pumps’ cold-weather
COPs. In an optimization example, coordinating electric
vehicle charging and discharging with flexible space and
water heating reduces the winter peak by 5.8 MW (35%)
and transformer degradation by 99%.

2. Models and Input Data

2.1. Base Electricity Demand

EDGIE includes electricity demand data for each
home in the base case of fossil-fueled driving and
heating. The electricity demand data come from the
Multi-Family Residential Electricity Dataset, compiled
by Meinrenken et al. (2020). This dataset includes
time-series measurements from 390 apartments in New
York City in 2019, averaged over groups of 15
apartments to protect user privacy. The measurements
include electricity used for nearly all purposes,
including cooling. However, they do not include
electricity for space or water heating, as the apartment
buildings burned natural gas for heat. To generate each
home’s base electricity load, EDGIE randomly samples
a load profile from one group of apartments, then
re-scales the data according to floor area. In simulations
of electrified neighborhoods, EDGIE adds the power
used for electric vehicle charging, water heating and
space heating to the base electricity demand. EDGIE
uses low-order linear differential equation models based
on Kircher et al. (2021). These models appear widely in
the research literature.

2.2. Electric Vehicles

EDGIE models electric vehicle batteries via

Ė(t) = −rE(t) + η1p1(t)− w1(t)

0 ≤ E(t) ≤ E

0 ≤ p1(t) ≤ p1.

(1)

Here t (h) denotes time, E (kWh) is the chemical
energy stored in the battery, r (1/h) is the battery’s
self-dissipation rate, η1 is the charging efficiency, p1
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(kW) is the electric charging power, w1 (kW) is the
chemical power discharged to drive the vehicle, E
(kWh) is the energy capacity, and p1 (kW) is the
charging power capacity. Assuming a zero-order hold
on the input signals over each time step of duration ∆t
(h) gives the exact discrete-time dynamics,

E(k+1) = a1E(k) +
1− a1

r
(η1p1(k)−w1(k)), (2)

where k indexes time steps and a1 = exp(−r∆t).

In the example simulations in this paper, each
vehicle uses a battery with capacity E = 50–82 kWh,
consistent with manufacturer data on a range of popular
vehicles. (EDGIE randomly generates all input data
mentioned with ranges, such as 50–82 kWh, from
independent symmetric triangular distributions.) The
vehicles charge on either Level 1, modeled as a 120
V/15 A circuit, or Level 2 (240 V/48 A), giving charge
capacities p1 of 1.8 or 11.5 kW. Round-trip commutes
range from 15–35 km per day, consistent with DOT
(2017) data. The vehicles have charging efficiencies η1
of 0.9–0.95, consistent with manufacturer data (Novac
et al. (2013)). EDGIE computes the discharged power
w1 by multiplying the commute distance times the
vehicle’s energy intensity (in kWh/km).

Figure 1. The simulated vehicles use more energy

per unit distance in very cold or very hot weather.

An electric vehicle’s energy intensity (the amount of
energy it discharges to drive a given distance) depends
on the outdoor air temperature. It increases in both cold
and hot weather. EDGIE captures these effects through
a model developed by Yuksel and Michalek (2015)
and illustrated in Fig. 1. In simulations, each user
recharges their battery when its state of charge drops
below 15–25%, consistent with some manufacturer
recommendations. To recharge, users plug their vehicles
in when they arrive home at 6–10 PM. The vehicles
charge at maximum power until their batteries are full.

2.3. Water Heating

EDGIE models water heaters via

C2Ṫ2(t) =
θ2 − T2(t)

R2
+ q2(t)− w2(t)

0 ≤ q2(t) ≤ η2p2h + p2r.

(3)

Here T2 (◦C) is the water temperature, C2 (kWh/◦C) is
the water’s thermal capacitance, θ2 (◦C) is the (constant)
air temperature surrounding the tank, R2 (◦C/kW) is the
thermal resistance between the water and surrounding
air, q2 (kW) is the thermal power supplied to the tank,
w2 (kW) is the thermal power withdrawn for showers,
dish-washing, laundry, etc., η2 is the heat pump’s COP,
p2h (kW) is the heat pump’s electric power capacity, and
p2r (kW) is the electric power capacity of the resistance
heater. In discrete time,

T2(k + 1) = a2T2(k) + (1− a2)[θ2

+R2(q2(k)− w2(k))],
(4)

where a2 = exp(−∆t/(R2C2)).

Figure 2. The control logic prioritizes the more

efficient heat pump, adding resistance if needed.

This model can represent a water heater with a
heat pump only (if p2r = 0), electric resistance only
(if p2h = 0), or a hybrid of the two (if p2h > 0
and p2r > 0). Fig. 2 illustrates the hybrid case,
wherein the control logic prioritizes the more efficient
heat pump and supplements it with resistance heating
only if the heat pump cannot meet thermal load alone. In
general, supplying thermal power q2(t) to the water uses
electric power p2(t), given by the following piecewise
definition:

0 q2(t) ≤ 0

q2(t)/η2 0 < q2(t) ≤ η2p2h
(1− η2)p2h + q2(t) η2p2h < q2(t) ≤ p2h + p2r
p2h + p2r p2h + p2r < q2(t).

(5)
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In simulations, each water heater has a user-specified
temperature set-point T̂2(k) at each time k. Driving the
water temperature from the current state T2(k) to the
next set-point T̂2(k + 1) would require thermal power

q̂2(k) =
1

R2

(
T̂2(k + 1)− a2T2(k)

1− a2
− θ2

)
+ w2(k).

(6)
Each water heater’s control system attempts to perfectly
track its set-point by delivering the thermal power q̂2(k),
but may saturate at an upper or lower capacity limit:

q2(k) = max(0,min(η2p2h + p2r, q̂2(k))). (7)

The cylindrical water heaters simulated here have
50–80 gallon (0.23–0.36 m3) volumes and 10 inch
(0.25 m) radii, typical dimensions for single-family
homes. Each thermal capacitance is the product of the
density, specific heat and volume of the water in the
tank. Each thermal resistance follows from dividing an
R-value of 6–8 ◦F ft2/BTU/h (1060-1410 ◦C m2/kW)
by the tank’s vertical surface area. Water withdrawals
come from the Building America Domestic Hot Water
Event Schedule Generator, which generates plausible
hot water withdrawals using the method in Hendron
et al. (2010). The temperature of inlet water to the
tank varies sinusoidally, with mean 10 ◦C, amplitude
5 ◦C, peak on August 5, and period of one year. This
inlet water temperature profile follows the empirical
data reported in Burch and Thornton (2012). The other
input parameters can be found in Kircher et al. (2021).

2.4. Space Heating

This study models space heating using similar
methods to those used for water heating. Each home
has an air-to-air heat pump, possibly supplemented with
backup resistance heating. A first-order linear model
captures the home’s temperature dynamics:

C3Ṫ3(t) =
θ3(t)− T3(t)

R3
+ q3(t) + w3(t)

0 ≤ q3(t) ≤ η3(θ3(t))p3h + p3r.

(8)

Here T3 (◦C) is the indoor air temperature, θ3 (◦C) is
the outdoor air temperature, C3 (kWh/◦C) is the thermal
capacitance of the indoor air and any tightly-coupled
thermal mass, R3 (◦C/kW) is the thermal resistance
between the indoor and outdoor air, q3 (kW) is the
thermal power supplied by the heat pump and/or
resistance heater, w3 is the exogenous thermal power
from the sun, plug loads, lights, body heat, etc., η3 is the
heat pump’s COP, p3h (kW) is the heat pump’s electric

power capacity, and p3r (kW) is the electric resistance
heating element’s power capacity. In discrete time,

T3(k + 1) = a3T3(k) + (1− a3)[θ3(k)

+R3(q3(k) + w3(k))],
(9)

where a3 = exp(−∆t/(R3C3)).
In simulations, each heat pump has a user-specified

temperature set-point T̂3 that may vary with time. Each
heat pump’s control system either tracks its set-point
exactly or saturates at a capacity limit. Driving the
indoor air temperature from T3(k) to the next set-point
T̂3(k + 1) would require thermal power similar to Eq.
(6) with appropriate subscript changes. As with water
heating, the space heating control logic prioritizes the
heat pump and uses resistance heating only if the heat
pump cannot meet thermal load alone:

q3(k) = max(0,min(η3(θ3(k))p3h + p3r, q̂3(k))).
(10)

Providing the thermal power q3(k) uses total electric
power p3(k), given by a piecewise definition that
matches the water heater definition (5) up to the
appropriate subscript changes.

The simulations in this paper use heat pump and
resistance heater capacities of p3h = 4.5 kW and p3r =
18 kW. The heat pump COPs vary linearly with the
outdoor temperature, with slopes and intercepts tuned to
specification sheets from several manufacturers. COPs
are 1.5–2 at -15 ◦C and 3–4 at 7 ◦C. Homes have
200–250 m2 of total floor area. EDGIE calculates the
thermal resistance R3 by dividing an overall R-value
of 2.8–3.9 ◦F ft2/BTU/h (500–700 ◦C m2/kW) by the
home’s total exterior wall area, assuming a square
footprint and two stories of 3–3.6 m height. The overall
R-value accounts for insulation, framing, windows,
doors, infiltration of outdoor air, etc. This process
results in a mean R3 of about 2.1 ◦C/kW. The thermal
capacitance C3 follows from the volume, density, and
specific heat capacity of the indoor air; it varies
from 1-3 (kWh/◦C). EDGIE computes w3 by rescaling
the global solar irradiance on a horizontal surface
(which most weather data services provide), adding
the base electricity demand (to model heat from lights,
electronics, etc.), and adding random noise representing
body heat. The resulting exogenous thermal power
intensity ranges from about 8–12 W per m2 of floor area.

2.5. Space Heating Experimental Validation

Simulations later in this paper suggest that space
heating is the primary driver of demand peaks from
electrification in cold climates. This makes validating
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EDGIE’s space heating model particularly important.
This paper therefore validates the space heating model
experimentally against an all-electric home in a cold
climate (West Lafayette, Indiana, USA). The validation
data span December 10–31, 2022, when a severe cold
snap brought outdoor air temperatures below -20 ◦C.
This cold snap allows model validation under nearly
worst-case conditions.

Figure 3. The experimental testbed, a 1920s-era

home retrofit with all electric appliances.

Fig. 3 shows the experimental testbed, an all-electric
home near Purdue University’s campus. The 1920s-era
home has two stories and 208 m2 of floor area. Its
exterior walls have R-21 ◦F ft2/BTU/h (3,500 ◦C
m2/kW) foam insulation. Accounting for framing, as
well as the U-1.4 BTU/h/ft2/◦F (8 W/m2/◦C) windows
that make up about 20% of the exterior wall area, gives
an overall R-value of about 3 ◦F ft2/BTU/h (530 ◦C
m2/kW). The home has an air-to-air heat pump with four
tons (14 kW) of rated cooling capacity and a Seasonal
Energy Efficiency Ratio of 18 BTU/Wh (5.3 seasonal
COP). The home has 19.2 kW of resistance heat.

Table 1 shows the validation results. The measured
and simulated total electrical energy used for heating
agree within 5% error. EDGIE overestimates the heat
pump energy and underestimates the resistance energy,
each by about 10%. EDGIE accurately matches the
individual peak power measurements for both the heat
pump and resistance, but overestimates the combined
peak by about 5%. This overestimation makes the
peak demand simulation results in this paper slightly
conservative.

Table 1. Experiment vs. Simulation Results

Heat Pump Resistance Combined
Exp’t Sim. Exp’t Sim. Exp’t Sim.

Peak kW 4.5 4.5 14.4 14.6 18.2 19.1
Total kWh 1,053 1,168 447 402 1,500 1,570

2.6. Transformers

Load changes due to electrification may stress
transformers, conductors, capacitor banks, switch-gear,
or other distribution grid components. Of these,

transformers are among the most sensitive to demand
peaks and the most expensive to replace (NREL (2023)).
The literature contains several standards for modeling
transformer degradation. All focus on the mean
temperature of the top layer of oil inside the transformer,
θto (K), and the temperature of the hottest spot within
that layer, θhs (K). This paper uses the IEC 60076-7
standard from Swift et al. (2001), which models the
temperature dynamics as

τtoθ̇to(t) = θa(t)− θto(t)

+ (θ̂to − θ̂a)

(
1 + ρIpu(t)

2

1 + ρ

)n

τhs(θ̇hs(t)− θ̇to(t)) = θto(t)− θhs(t)

+ (θ̂hs − θ̂to)Ipu(t)
2m.

(11)

Here τto (h) is the top oil time constant, θa (K) is
the ambient air temperature, ρ is the transformer’s
loss-of-load ratio, Ipu is the per-unit current, n is the top
oil exponent, τhs (h) is the hot spot time constant, and
m is the hot spot exponent. Variables with hats, such as
θ̂a, denote values at the transformer’s rated conditions.
The simulations in this paper use the parameter values
in Table 2, which come from Elmoudi et al. (2006).

Table 2. Transformer Parameters

Parameter Value
Rated power 16 MVA
Cooling modes ONAF
Top oil time constant, τto 2.67 h
Rated top oil temperature rise, θ̂to − θ̂a 50.6 K
Loss-of-load ratio, ρ 9.09
Top oil exponent, n 0.9
Hot spot time constant, τhs 0.1 h
Rated hot spot temperature rise, θ̂hs − θ̂to 26 K
Hot spot exponent, m 0.8

Given the hot spot temperature, Swift et al. (2001)
model the transformer’s loss of life between times t1 and
t2 (h) as

∫ t2

t1

exp

[
(15000K)

(
1

383K
− 1

θhs(t)

)]
dt. (12)

If the hot spot temperature remains constant at θhs = 383
K between t1 and t2, the transformer loses t2 − t1 hours
of life. Higher values of θhs cause exponentially faster
transformer degradation.

Page 3127



Figure 4. The IEEE 33 bus network topology.

2.7. Distribution Networks

To evaluate the impacts of electrification on
distribution network voltages, EDGIE interfaces with
MATPOWER (Zimmerman and Murillo-Sanchez
(2020)), an open-source toolbox for power flow
simulation and optimization. MATPOWER works
with a wide variety of transmission and distribution
networks. The simulations in this paper use the IEEE
33 bus distribution network shown in Fig. 4, with each
bus corresponding to 30 homes. EDGIE computes
the power draws at each bus in each time step, then
feeds these values to MATPOWER, which solves the
network’s governing equations for the bus voltages.

3. Simulation Results for the Central Case

This section presents simulation results for 990
homes (30 per bus in the IEEE 33 bus network) during
the coldest week of 2019 in New York City, when
outdoor air temperatures dropped below -16 ◦C. This
section discusses the central case, wherein all homes
have air-to-air heat pumps and resistance backup for
space heating, resistance water heaters, and electric
vehicles with Level 2 chargers. The heat pumps, sized
for cooling, run concurrently with resistance backup
in the coldest hours. Users keep their indoor air
temperature set-points constant, rather than reducing
them overnight. Each home has two electric vehicles,
consistent with the United States average of 1.86 (DOT
(2017)). Simulating 990 homes over five days at
one-hour time steps takes 12 seconds on a 2.9 GHz
processor with 16 GB of RAM. The next section of this
paper presents sensitivity analyses that perturb various
parameters away from the central case described above.

Fig. 5 shows the load composition in the central
case. The blue curve represents a ‘no electrification’
baseline, where all homes have fossil-fueled vehicles
and heaters. Adding resistance water heaters (magenta
curve) increases winter peak demand modestly, from
about 3.4 MW to just above today’s 3.9 MW summer
peak (dashed red line). Adding electric vehicles (green
curve), however, raises the peak over 7 MW, about 85%
higher than today’s summer peak. Adding heat pumps

Figure 5. Aggregate load on the coldest days of

2019 in New York. Under full electrification, winter

demand peaks at about 4 times today’s summer peak.

with resistance backup (black curve) raises the peak to
16.5 MW on January 21, when the outdoor temperature
dropped to -16 ◦C. This is roughly quadruple today’s
summer peak. Fig. 6 further illustrates these trends.

Figure 6. Space heating is the primary driver of

demand peaks in the cold-weather simulations.

4. Sensitivity Analyses

4.1. Electric Vehicles

In the central case, the electric vehicles all charge
on Level 2 (modeled as 240V/48A, or 11.5 kW). Would
switching to Level 1 (modeled as 120V/15A, or 1.8 kW)
reduce peak aggregate demand? In the week simulated
here, the answer is no. While switching to Level 1
reduces the peak vehicle charging load, it also keeps
vehicles charging through the night, shifting the vehicle
charging peak toward the space heating demand peak
around 4 AM on January 21 (see Fig. 5). These effects
more or less cancel each other out, leading to negligible
reduction of the weekly peak. However, switching to
Level 1 charging does reduce daily peaks on other days,
typically by around 10%.

As discussed in Sec. 2.2, EDGIE models the
dependence of electric vehicle driving efficiencies on
the outdoor temperature. Driving efficiencies typically
drop off in cold weather due to cabin heating, increased
energy use by battery thermal management systems,
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or altered battery chemistry. Testbeds that neglect
these effects risk underestimating winder demand peaks.
Re-simulating the central case with constant driving
efficiencies, rather than temperature-dependent ones,
underestimates the neighborhood’s winter demand peak
by 1.3 MW (8%).

4.2. Water Heating

In the central case, all homes use resistance water
heaters. Alternatively, homes could use heat-pump
water heaters or hybrid heat-pump/resistance units.
Heat-pump water heaters can have COPs of 2.5 or
above, and therefore use substantially less power than
resistance units (COP ≈ 1). Re-simulating the central
case with all heat-pump water heaters reduces peak
demand for water heating substantially, but only reduces
the overall peak by about 1%. This is because even in
the central case with all resistance units, water heating
only contributes about 3% to the overall peak.

Figure 7. Using bigger heat pumps without resis-

tance backup reduces the peak by 3.5 MW (21%).

4.3. Space Heating

In the central case, homes use air-to-air heat pumps
sized for cooling. When heating load exceeds heat pump
capacity, resistance backup provides supplementary
heat. Alternatively, homes could use larger heat pumps
sized to meet peak heating load without resistance
backup (modeled here as 7 kW electric capacity, rather
than 4.5 kW if sized for cooling). Fig. 7 shows the
electrified neighborhood’s peak demand with varying
numbers of homes using resistance backup. The far
right bar represents the central case. As the prevalence
of resistance backup decreases, the peak also decreases,
reaching 13.2 MW (24% reduction, far left bar) if no
homes use resistance backup.

In the central case, users keep their indoor
temperature set-points constant, night and day.
Alternatively, users could reduce their temperature
set-points overnight. This would save energy, as heating
load scales with the temperature difference between the

Figure 8. Warming a home back up after a night

set-point reduction causes a high morning peak.

indoor and outdoor air. However, warming a home back
up after a night set-point reduction can cause a new
morning peak. Fig. 8 shows this effect for two similar
homes: one with a constant temperature set-point (solid
orange curves) and one with a lower set-point overnight
(blue curve). Constant indoor temperatures keep the
power used for heating (bottom plot) fairly smooth.
Overnight set-point reductions, however, cause power
spikes during the morning warm-up periods, sometimes
reaching the combined capacity of the heat pump and
resistance backup (dashed red line).

Figure 9. Lowering all temperature set-points

overnight increases the peak by 9.9 MW (66%).

Fig. 9 shows the effect of night set-point reductions
at the neighborhood scale. In these simulations, users
raise their temperature set-points back up between 7
and 10 AM. As more homes reduce their set-points
overnight, the neighborhood peak increases from 16.6
MW in the central case (far left) to 27.5 MW when every
user reduces their set-point overnight (far right). This
increases the neighborhood peak by 8.9 MW (66%).

Fig. 10 shows the influence on the neighborhood
peak of the overall thermal resistance R between the
indoor and outdoor air. This parameter models the
combined effect of a home’s size (hence its external
surface area for heat transfer), insulation R-values,
air-sealing, window sizes and U-values, etc. The peak
increases sharply as the neighborhood-average of R
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Figure 10. Increasing the mean thermal resistance

to 4 ◦C/kW reduces the peak by 6.8 MW (41%).

drops below its value in the central case (about 2.1
◦C/kW). The peak drops more slowly as R increases
above the central case, with diminishing returns beyond
about 4 ◦C/kW. The diminishing returns follow from the
fact that heating load scales like 1/R. Increasing the
neighborhood-average of R to 4 ◦C/kW reduces peak
demand by about 6.8 MW (41%).

Figure 11. Increasing the mean cold-weather COP

from 1.8 to 3 reduces the peak by 4.9 MW (30%).

Fig. 11 shows the influence on the neighborhood
peak of the heat pumps’ cold-weather COPs. These
simulations follow the same set-up as the central case,
including the linear dependence of COPs on the outdoor
temperature. The warm-weather COP points remain
at their central values (COP 3.5–4 at 7 ◦C). However,
the cold-weather COP points sweep from their central
values (COP 1.5–2 at -15 ◦C) down to 1 and up to 3.
Increasing the neighborhood-average cold-weather COP
to 3 reduces the peak by 4.9 MW (30%).

In Fig. 11, the peak decreases linearly with
the cold-weather COP. This linearity may seem
counter-intuitive, as a heat pump’s power input typically
scales reciprocally with the COP, similar to the 1/R
dependence in Fig. 10. The linearity in Fig. 11 follows
from the fact that the overall peak in the central case
happens during the coldest hours, when each heat pump
runs at maximum capacity and resistance backup meets
the remaining load. In these hours, ηph + pr = q,
where η is the cold-weather COP, ph (kW) is the heat
pump’s electric power capacity (4.5 kW in the central
case), pr (kW) is the resistance heater power, and q (kW)

is the home’s heating load. Solving this equation for
pr shows that the combined power input for heating,
ph + pr = ph + q − ηph, scales linearly with η. The
slope, −ph = −4.5 kW, agrees with Fig. 11.

5. Optimization Example

This section demonstrates EDGIE’s optimization
capabilities through the example of coordinating
bidirectional electric vehicle charging with flexible
space and water heating. This example has about 1.2
million decision variables: the vehicle charging and
discharging powers, battery energy levels, water heating
powers, water temperatures, space heating powers, and
indoor air temperatures. The optimization decides these
variables at each one-hour time step over five days
and for each of the 990 homes and 1,980 vehicles in
the neighborhood. The cost function penalizes peak
aggregate demand, electrical energy use, and deviations
of the indoor air and hot water temperatures from their
user-specified set-points. The models (1), (3) and (8) act
as constraints. The optimization also constrains the air
and water temperatures to bands around their set-points.
EDGIE solves the problem using CVX (Grant and Boyd
(2014)), a convex optimization toolbox. Because the
optimization problem is convex, CVX returns a globally
optimal solution within a specified numerical precision.
Optimizing the 1.2 million variables takes about 40
minutes on a 2.9 GHz processor with 16 GB of RAM.

Figure 12. Optimal bidirectional charging and flexible

heating reduce peak demand by 5.8 MW (35%).

Fig. 12 shows the aggregate demand in the central
case (black curve) and with optimal device coordination
(dashed magenta curve). Optimization reduces the
peak by 5.8 MW (35%), primarily by charging the
vehicle batteries off-site before the coldest nights and
discharging them to power the heating systems. The
indoor air and hot water temperatures also drop slightly
during the coldest hours, further reducing the peak.

Fig. 13 shows the per-unit voltages in the IEEE-33
bus network in the central (black) and optimized
(magenta) cases during the peak hour. In the central
case, voltages drop catastrophically, reaching about 0.05
per-unit at some buses. (Ideally, per-unit voltages would
remain near unity.) Voltages are higher in the optimized
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Figure 13. Without optimization, voltages collapse

catastrophically. Voltages improve with load

optimization, but still sag at remote buses.

case, but still drop to unacceptable levels at the furthest
buses from the substation (buses #14–18; see Fig. 4 for
the network topology).

Figure 14. Load optimization keeps the substation

transformer cooler, extending its life.

Fig. 14 show shows the hot spot temperature during
the simulated week. Although the optimization problem
does not explicitly penalize transformer degradation,
peak demand serves as a useful stand-in. While the hot
spot temperature reaches 190 ◦C in the central case, it
remains below the 110 ◦C reference in the optimized
case. This radically reduces transformer degradation,
which scales exponentially with the hot spot temperature
(see Eq. (12)). Table 3 summarizes the lost hours
of transformer life in the two cases. For reference,
transformers typically have lifetimes of 20–30 years
(175–263 thousand hours).

Table 3. Transformer Loss of Life

Unoptimized (h) Optimized (h)
4,277 9

6. Conclusion

This paper introduced EDGIE, an open-source,
experimentally-validated testbed aimed at
characterizing and mitigating the impacts of
electrification on distribution grids. EDGIE uses
real data on weather conditions, base electricity load,
driving habits, home sizes, domestic hot water use, and

equipment characteristics. This paper demonstrated
EDGIE’s capabilities by simulating vehicle charging,
space and water heating, transformer degradation, and
network power flows for an electrified neighborhood in
a cold climate. Sensitivity analyses revealed key drivers
of demand peaks. This paper demonstrated EDGIE’s
optimization capabilities by coordinating bidirectional
vehicle charging with flexible space and water heating.

While EDGIE currently includes the main drivers
of grid impacts from electrification, it does not include
other equipment of potential interest. Future versions
may model power line thermal dynamics, rooftop solar
panels, stationary batteries, thermal storage, or backup
heat sources other than electric resistance. The authors
hope that EDGIE will enable researchers to investigate
the grid impacts of electrification in many locations and
scenarios, and to develop strategies to mitigate those
impacts. These research efforts could help utilities and
regulators plan grid upgrades more effectively, either by
avoiding unnecessary upgrades or by sizing new power
lines and transformers to more precisely match load
growth. Planning grid upgrades more effectively could
help keep electricity reliable and affordable as people
increasingly electrify their buildings and vehicles.

7. Data Availability Statement

The data and code that support this study are
available at https://github.com/priyada7/EDGIE.
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