Constance Crozier

• Atlanta, GA 🖂 ccrozier8@gatech.edu 🔗 constancecrozier.com in Constance Crozier 🗘 constancecrozier

Education _

D.Phil University of Oxford, Engineering Science

Oct 2016 – July 2020

- Thesis: Impact of Domestic Electric Vehicles on Electricity Networks
- Advisor: Malcolm McCulloch

M.Eng University of Oxford, Engineering Science

Oct 2012 – July 2016

- Thesis: Bayesian Non-Parametrics for the War in Afghanistan
- · Advisor: Michael Osborne

Experience _____

Georgia Institute of Technology, H. Milton School of Industrial & Systems Engineering **Assistant Professor**

Atlanta, GA Aug 2023 – present

University of Colorado Boulder, Civil, Environmental, and Architectural Engineering

Boulder, CO Sep 2020 – July 2023

Postdoctoral Associate (Advisor: Kyri Baker)

London, UK Oct 2019 - August 2020

Technical Energy Advisor

UK Department for Business, Energy & Industrial Strategy

Publications

Published peer reviewed journal articles

- [J16] M. Mohammadian, C. Crozier, K. Baker, Spatial arbitrage through bidirectional electric vehicle charging with delivery fleets, Applied Energy, 2024.
- [J15] C. Crozier, M. Neaimeh, M. Deakin, Learning by charging: Understanding consumers' changing attitudes towards vehicle-to-grid, Applied Energy, 2024.
- [J14] C. Crozier, A. Pigott, K. Baker, Price perturbations for privacy preserving demand response with distribution network awareness, IEEE Transactions on Smart Grid, 2024.
- [J13] C. Crozier, K. Baker, The effect of renewable electricity generation on the value of cross-border interconnection, Applied Energy, 2022.
- [J12] A. Pigott, C. Crozier, K. Baker, Z. Nagy, GridLearn: multiagent reinforcement learning for grid-aware building energy management, Electric Power Systems Research, 2022.
- [J11] C. Crozier, K. Baker, B. Toomey, Feasible region-based heuristics for optimal transmission switching, Sustainable Energy, Grids and Networks, 2022.
- [J10] C. Crozier, C. Quarton, N. Mansor, D. Pagnano, I. Llewellyn, Modeling of the ability of a mixed renewable generation electricity system with storage to meet consumer demand, *Electricity*, 2022.
- [J9] K. Collett, S. Hirmer, H. Dalkmann, C. Crozier, Y. Mulugetta, M. McCulloch, Can electric vehicles be good for Sub-Saharan Africa?, Energy Strategy Review, 2021.
- [J8] C. Crozier, T. Morstyn, M. McCulloch, Capturing diversity in electric vehicle charging behaviour for network capacity estimation, Transportation Research Part D: Transport and Environment, 2021.
- [J7] C. Crozier, T. Morstyn, M. McCulloch, The opportunity for smart charging to mitigate the impact of EVs on the GB transmission and distribution systems, Applied Energy, 2020.

- [J6] C. Crozier, M. Deakin, T. Morstyn, M. McCulloch, Co-ordinated electric vehicle charging to reduce losses without network impedance information, *IET Smart Grid*, 2020.
- [J5] T. Morstyn, C. Crozier, M. Deakin, M. McCulloch, Electric vehicle smart charging with battery voltage awareness using second-order cone programming, *IEEE Transactions on Transport Electrification*, 2020.
- [J4] C. Crozier, M. Deakin, T. Morstyn, M. McCulloch, The case for bi-directional charging of electric vehicles in low voltage distribution networks, *Applied Energy*, 2020.
- [J3] K. Collett, M. Byamukama, C. Crozier, M. McCulloch, Energy and transport in Africa and South Asia, *Energy and Economic Growth*, 2020.
- [J2] C. Crozier, D. Apostolopoulou, M. McCulloch, Mitigating the impact of personal vehicle electrification: A power generation perspective, *Energy Policy*, 2018.
- [J1] J. Cao, C. Crozier, M. McCulloch, Optimal design and operation of a low carbon community based multi-energy systems considering EV integration, *IEEE Transactions on Sustainable Energy*, 2018.

Peer reviewed conference proceedings

- [C17] C. Ju, C. Crozier, Learning a local trading strategy: Deep reinforcement learning for grid-scale renewable energy integration, *Hawaii International Conference on System Sciences*, 2025.
- [C16] R. Davila-Severiano, C. Crozier, Scheduling electrified freight transportation to increase renewable generation utilization, *IEEE North American Power Systems Conference*, 2024.
- [C15] E. Marchesini, B. Donnot, C. Crozier, I. Dytham, C. Merz, L. Schewe, N. Westerbeck, C. Wu, A. Marot, P. Donti, RL2Grid: Benchmarking reinforcement learning in power grid operations, Submitted: *International Conference on Machine Learning*
- [C14] H. Sharadga, J. Mohammadi, C. Crozier, K. Baker, Optimizing Multi-Timestep Security-constrained optimal power flow for large power grids, *IEEE Texas and Power Engineering Conference*, 2024.
- [C13] Priyadarshan, E. Pergantis, C. Crozier, K. Baker, K. Kircher, EDGIE: A simulation test-bed for investigating the impacts of building and vehicle electrification on distribution grids, *Hawaii International Conference on System Sciences*, 2024.
- [C12] S. Curtis, J. Montagu, C. Crozier, C. Torres-Machi, K. Baker, Trends in equitable electric vehicle adoption and impacts on pavement quality and electric power reliability, *ASCE*, 2024.
- [C11] C. Winner, J. Garland, C. Crozier, K. Baker, Carbon emissions resulting from different power flow models for dispatch, *IEEE PES General Meeting*, 2023.
- [C10] C. Crozier, K. Baker, Data-driven probabilistic constraint elimination for accelerated optimal power flow, *IEEE PES General Meeting*, 2022.
- [C9] C. Crozier, A. Pigott, K. Baker, Spatial arbitrage through bidirectional electric vehicle charging, *IEEE PES General Meeting*, 2022.
- [C8] M. Li, Y. Du, J. Mohammadi, C. Crozier, K. Baker, Numerical comparisons of linear power flow approximations: optimality, feasibility, and computation time, *IEEE PES General Meeting*, 2022.
- [C7] C. Crozier, K. Baker, Y. Du, M. Li, J. Mohammadi, Data driven methods for contingency filtering in security constrained optimal power flow, *International Conference on Probabilistic Methods Applied to Power Systems*, 2022.
- [C6] C. Crozier, K. Baker, Optimal sizing of an energy storage portfolio considering multiple time-scales, *IEEE PES General Meeting*, 2021.
- [C5] M. Deakin, C. Crozier, T. Morstyn, D. Apostolopoulou, M. McCulloch, Stochastic hosting capacity in distribution networks, *IEEE PES General Meeting*, 2019.
- [C4] C. Crozier, M. Deakin, T. Morstyn, M. McCulloch, Incorporating charger efficiency into electric vehicle charging optimization, *Innovation in Smart Grid Technologies (ISGT) Europe*, 2019.

- [C3] L. Han, T. Morstyn, C. Crozier, M. McCulloch, Improving the scalability of a prosumer cooperative game with k-means clustering, *IEEE PowerTech*, 2019.
- [C2] C. Crozier, D. Apostolopoulou, M. McCulloch, Clustering of usage profiles for electric vehicle behaviour analysis, *Innovation in Smart Grid Technologies (ISGT) Europe*, 2018.
- [C1] C. Crozier, D. Apostolopoulou, M. McCulloch, Numerical analysis of national travel data to assess the impact of UK fleet electrification, *Power Systems Computation Conference*, 2018.

Teaching _____

- **ISyE 4501 Energy, Efficiency and Sustainability**, Undergraduate class with 19–38 students Spring 2025, Spring 2024
- **ISyE 6669 Deterministic Optimization**, Graduate class with 24–55 students.

Spring 2025, Fall 2023

Grants and Contracts _____

As Principal Investigator

2. Title of Project: Quantifying benefits of behind-the-meter solar power for various customers

Agency/Company: Great Plains Institute

Total Dollar Amount: \$30,000 Candidate's Share: 100%

Collaborators: Valerie Thomas (Co-PI) Period of Contract: 1/2025 – 7/2025

1. Title of Project: Mitigating the risk of life threatening power outages during extreme weather

Agency/Company: Brook Byers Institute for Sustainable Systems

Total Dollar Amount: \$17,500 Candidate's Share: 100% Collaborators: Brian An (Co-PI) Period of Contract: 8/2024 – 7/2025

As Co-Principal Investigator

1. Title of Project: Fast and robust strategies for large-scale mixed-integer SCOPF

Agency/Company: ARPA-E Total Dollar Amount: \$400,000

Collaborators: Javad Mohammadi (PI), Kyri Baker (Co-PI)

Period of Contract: 6/2022 - 10/2024

Graduate Students _____

Current PhD Students

• Rina Davila Severiano, Fall 2023 – pres

Thesis topic: Demand flexibility from electrified supply chains

Milestones: Passed qualifying exam (Oct 2024)

• Xiangxin An, Fall 2024 - pres

Thesis topic: Integer decisions in power system operation

Co-advisor: Santanu Dey

Service _____

Invited Talks _____

Decision tools for more flexible electric power grids	
NC State University, Department of Industrial and Systems Engineering	Oct 2024
Power sector decarbonization with human-in-the-loop	
Stanford University, Department of Mechanical Engineering	Aug 2023
Newcastle University, Department of Electrical Engineering	Jun 2023
UC Davis, Department of Electrical and Computer Engineering	Mar 2023
Duke University, Department of Civil and Environmental Engineering	Mar 2023
Cornell, Department of Civil and Environmental Engineering	Mar 2023
Cornell Tech, Department of Electrical and Computer Engineering	Mar 2023
Carnegie Mellon University, Department of Electrical and Computer Engineering	Feb 2023
Georgia Tech, Department of Industrial and Systems Engineering	Feb 2023
Rice University, Department of Civil and Environmental Engineering	Jan 2023
Texas A&M, Department of Electrical and Computer Engineering	Dec 2022
Large scale low carbon electricity networks with human-in-the-loop	
Imperial College London, Department of Electrical and Electronic Engineering	Mar 2022
Boston University, Department of Electrical and Computer Engineering	Mar 2022
MIT, Department of Mechanical Engineering	Feb 2022
Temple University, Department of Electrical and Computer Engineering	Feb 2022