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Abstract—Energy storage is likely to play a key role in
future power systems relying primarily on renewable generation.
Appropriate sizing of these systems is vital for a reliable future
power system. A variety of energy storage technologies exist, some
of which are suited to store energy across different timescales
than others. It is necessary to co-optimize all energy storage
technologies to ensure that there is sufficient generation to utilise
all devices. This requires considering both short and longer
timescales simultaneously. This paper proposes a stochastic
optimization algorithm for sizing of a portfolio of energy storage
technologies that operate across a variety of timescales. Its
application is demonstrated using a case study of the UK’s
transmission level demand, but with renewables scaled to meet
the majority of energy demand.

Index Terms—Energy storage, Optimization, Power system
planning, Power system reliability, Stochastic systems

I. INTRODUCTION

This paper presents a convex formulation for optimal sizing
of a portfolio of different energy storage technologies, consid-
ering operation over multiple timescales.

Renewable electricity generation has been increasing rapidly
over the last decade. At the end of 2019, there was an esti-
mated 2.5 TWh of renewable electricity generation installed
globally – an increase of 107% from 2010 [1]. Increasingly,
governments are making commitments to move towards a
zero-carbon electricity system (e.g. [2]), where it is likely
the majority of electricity will be generated from renewables.
Due to their low cost, the majority of the increased renewable
supply is expected to come from wind and solar power [3].

One barrier to the integration of renewable electricity is
its intermittency; solar and wind generation depend on the
weather and are therefore subject to local and seasonal varia-
tions. Energy storage provides a potential solution, by storing
energy at times of surplus and discharging at times of short-
fall. In a system relying primarily on renewable generation,
appropriately sizing the energy storage will be vital to ensure
a reliable power supply.

Previous research has addressed the sizing of energy stor-
age systems. For example, using two-stage model predictive
control [4], a bounded problem [5], mixed integer linear
programming [6], iterative optimal power flow [7], and robust
stochastic optimization with an optimal value function [8].
However these all considered only a single type of energy
storage, with a heavy focus on Lithium Ion (Li-ion) batter-
ies. Battery energy storage is attractive because of its high

efficiency and fast response time, however the high cost and
non-negligible self-discharge rates means it is ill-suited for
long-term energy storage.

It has been shown that a single energy storage technology
is sometimes inadequate to meet energy requirements [9].
A cheaper and more reliable system can be obtained by
incorporating multiple forms of energy storage. For example,
hybrid battery-hydrogen [10], battery-supercapacitor [9], [11],
[12], battery-thermal [13], and battery-pumped hydro [14],
[15] have been proposed. A more detailed review of existing
energy storage methods and the sizing methods that have been
proposed is presented in [16].

Sizing such a system is difficult, because the different
technologies are suited for operation over different time-
scales. For example, Li-ion batteries are suited to short
duration energy storage, while hydrogen is better suited to
inter-seasonal storage [17]. This makes it challenging to co-
optimize multiple storage assets, as the more time steps that
must be considered, the higher the computational complexity.
However, the individual storage technologies can not be sized
independently, because the available generation needs to be
allocated between the devices – without a day-to-day energy
surplus, there will be insufficient energy available to charge
longer term storage.

Some algorithms have been proposed which aim to size
systems over multiple time scales. Both hourly and intra-hour
timescales are included in [18], [19], however these both focus
on a small number of near time-steps. In [20] the authors
propose a method for optimizing the use of battery energy
storage in both the frequency (short-term) and energy (long-
term) markets. However, the problem is defined in terms of
the battery health and revenue, rather than the cost of the
electricity system.

Other work attempts to simplify the problem in order to
approximately solve an optimization with a large number of
time steps. In [14] they split the time horizon into subprob-
lems that are solved using alternating direction method of
multipliers, however this method requires perfect knowledge
of the generation and demand. In [15] clustering is used
to group similar hours, in order to reduce the number of
time steps considered, which they show achieves a reasonable
approximation of the full problem.

One of the limitations of many of the existing methods is
that they scale badly with the number of decision variables,



hence limiting the number of time steps that can be considered.
The majority of the algorithms discussed used non-convex
formulations, which typically scale significantly worse than
their convex counterparts. This effect is demonstrated by the
case studies in the papers discussed, which used time horizons
of one hour [4], one day [5], [8], and ten days [7].

In this paper we formulate sizing of multiple storage assets
over multiple timescales as a stochastic linear programming
problem. This formulation differs from the aforementioned
literature because it takes into account both multiple modes
of storage and multiple timescales, and because of its con-
vexity – allowing a comparatively large number of time steps
and modes of storage to be considered simultaneously. We
demonstrate the performance of this algorithm through a case
study of the Great British (GB) transmission system with solar
and wind power scaled to meet the majority of demand.

The formulation presented here is for economic dispatch,
and therefore does not include placement of storage assets, or
power flow analysis. For sizing of the total storage system it
is assumed that the network configuration will not affect the
total amount of storage required. However, the constraints of
the network may limit the total amount of storage which can
be put onto the system, and so power flow analysis should be
done separately.

II. PROBLEM FORMULATION

In this section, the energy storage sizing problem is for-
mulated as a stochastic linear program. First, the parameters
used to describe each storage asset are described, then multi-
timescale optimal sizing is formulated as a linear programming
problem, and finally a scenario-based approach is used to
incorporate stochasticity into the problem.

A. Energy Storage Model

A variety of energy storage models have been proposed,
ranging from those that only consider round-trip efficiency
(e.g. [6]) to detailed models which capture the life-time
behavior of a device (e.g. [21]). Here we attempt to maximize
the model’s expressivity, while allowing a convex formulation
of the optimization problem. A technology neutral approach is
taken, meaning that the parameters chosen can be derived for
any energy storage technology. The specific parameters used
are as follows:
(1) charging efficiency: the percentage of the energy extracted
from the grid that is put into storage. This is assumed to be
constant, although in reality it may be a function of the state
of charge of the storage.
(2) discharging efficiency: the percentage of the energy ex-
tracted from storage that is exported to the grid (also as-
sumed to be constant). Separating discharging and charging
efficiency is important, as some technologies have dispropor-
tionate losses on one side, and this affects the required storage
capacity.
(3) self-discharge rate: the rate at which charge will naturally
dissipate if left in storage. Including this parameter is particu-
larly important for thermal storage systems, which have higher

self-discharge rates. In reality the self-discharge rate is likely
to be a function of many external and internal parameters –
e.g. for thermal storage the ambient temperature. However,
here we make the simplification that self-discharge is linear
with state of charge.
(4) fixed cost: the cost per MWh of installed capacity. This
includes the capital cost and any fixed maintenance costs. It is
assumed that all considered storage technologies have similar
life-times, however if this is not the case then the fixed cost
per annum could be used instead.
(5) operational cost of charging: the variable cost associated
with charging the storage, or the cost per MWh of inflow.
This could include variable operation and maintenance costs,
or use-dependant degradation costs.
(6) operational cost of discharging: the cost per MWh of
outflow. This is separated from the operational cost of charging
because it may affect the order in which stored assets are
discharged.

The optimization problem is formulated in terms of these
generic parameters, but the case study in Section III consid-
ers three specific technologies: Li-ion battery, hydrogen, and
compressed air storage.

B. Deterministic Formulation

Consider Ns methods of energy storage, each denoted by
a superscript (i) over Nt time intervals, t, each of length δt
hours. The (grid-side) charging power of storage i at time
t is given by c

(i)
t and the discharging by d

(i)
t . Note that

it is necessary to define separate variables for charging and
discharging in order to incorporate conversion losses into
the formulation in a convex manner. Although simultaneous
charging and discharging is not explicitly disallowed, there
are cost terms associated with both charging and discharging,
meaning it will never occur in the minimum cost solution.
The charging and discharging at each time interval are limited
according to the rate limits of the storage technology, such
that:

0 ≤ c(i)t ≤ c̄(i)Θ(i)δt and (1)

0 ≤ d(i)t ≤ d̄(i)Θ(i)δt ∀t, i , (2)

where c̄(i) is the maximum charging rate in % per hour,
and Θ(i) is the total usable storage capacity in MWh – it
is necessary to distinguish between usable and nameplate
capacity, because some storage technologies must stay within
tighter bounds of charge. The amount of usable energy stored
in asset i at time t is written as C(i)

t , and can be related to
the amount of energy stored at time t− 1 as:

C
(i)
t = C

(i)
t−1(1− s(i)δt) + η(i)c c

(i)
t δt −

1

η
(i)
d

d
(i)
t δt , (3)

where ηc, ηd are the charging and discharging efficiencies
respectively, and s(i) is the self-discharge rate. Given some
known value for initial state of charge, C(i)

0 , the energy stored
at each time step can be formed as linear functions of the



the decision variables [ c
(i)
t , d

(i)
t ] in terms of the storage

parameters [ s(i), C
(i)
0 , η

(i)
c , η

(i)
d ]. Constraints must be placed

on the charge of each asset at each time, to ensure that it
always stays between 0 and 100%:

0 ≤ C(i)
t ≤ Θ(i) ∀t, i . (4)

Additionally a final energy constraint should be placed on the
state of charge at the end of the optimization horizon:

C
(i)
Nt
≥ C(i)

0 ∀i . (5)

This is necessary to avoid initially stored energy being used
as generation rather than storage. The final constraint is on the
energy balance at each time step:

pt +
∑
i

c
(i)
t −

∑
i

d
(i)
t ≤ σt ∀t , (6)

where pt is the net demand (i.e. the demand minus the
renewable generation) and σt is a nonnegative slack variable.
If σt = 0 ∀t then the storage is sufficient to satisfy demand at
all times, however the inclusion of this variable allows some
flexibility in demand to be modelled, and prevents computa-
tional infeasibility in the optimization problem. Note that this
is defined as an inequality rather than an equality constraint
because it is assumed that excess renewable generation could
be curtailed.

The total cost of the storage system, f , that is to be
minimized can be decomposed into three distinct components:

f(c, d,Θ, σ) = fop(c, d) + fcp(Θ) + fd(σ) , (7)

where fop represents the cost of operating the storage assets,
fcp represents the capital purchase price, and fd is the cost
associated with demand flexibility. These can each be defined
as follows:

fop(c, d) =
∑
i

αi

∑
t

c
(i)
t δt +

∑
i

βi
∑
t

d
(i)
t δt , (8)

fcp(Θ) =
∑
i

γiΘ
(i) , (9)

fd(σ) =
∑
t

ktσtδt , (10)

where αi, βi represent the cost of charging or discharging
a storage asset respectively, γi represents the cost per unit
of capacity, and kt represents the cost per unit of demand
reduction. The deterministic optimal sizing problem can then
be formulated as: minimize (7), subject to (1-6).

C. Stochastic Formulation

The previous section assumes that the net demand pt is
know with certainty. However, high levels of uncertainty
are present in both the demand and the renewable supply.
Capturing this variability is essential for sizing energy storage
systems, because the system must be large enough to provide
a reliable power supply with some degree of confidence, rather
than just in a single case.

Here we adopt a scenario based approach to incorporate
stochasticity, such that we consider Nsc discrete scenarios for

TABLE I: The storage parameters used in the simulation

Storage ηc ηd c̄ d̄ s α β γ

Li-ion 0.92 0.92 0.25 0.25 2.8e−5 0.1 0.1 2.0e5

CAES 0.92 0.71 0.095 0.2 0 33 33 1.2e5

H2 0.80 0.58 0.001 3e−3 0 60 40 4.3e4

pt that are each considered to be equally likely. Additional de-
cision variables are defined for the charging and discharging of
each storage asset, and demand suppression in each scenario.
However a single set of variables are used for storage capacity,
as the system must be sufficient size for all scenarios. The
constraints are therefore re-written as:

0 ≤ c(i)t,sc ≤ c̄(i)Θ(i)δt ∀t, sc (11)

0 ≤ d(i)t,sc ≤ d̄(i)Θ(i)δt ∀t, sc (12)

0 ≤ C(i)
t,sc ≤ Θ(i) ∀t, sc, i (13)

C
(i)
0 ≤ C

(i)
Nt,sc

∀sc, i (14)

σt,sc ≥ pt,sc +
∑
i

c
(i)
t,sc −

∑
i

d
(i)
t,sc ∀t, sc (15)

where the subscript sc denotes the scenario specific variables.
The objective function is replaced with the expected value

of the objective across all of the scenarios. If the likelihood
of individual scenarios were known, then the objectives could
be weighted by their probability. However, this formulation
assumers all scenarios to be equally likely, and so the average
objective is used:

f(.) =fcp(Θ) +
1

Nsc

∑
sc

(
fop(csc, dsc) + fd(σsc)

)
. (16)

Given that the objective and constraints are all linear
functions of the decision variables [ c

(i)
t,sc, d

(i)
t,sc,Θ

(i) ], the
optimization problem takes the form of a linear programming
problem – which are convex and can be solved using com-
mercial solvers such as cvxopt.

III. CASE STUDY

In this section we demonstrate the application of the pro-
posed algorithm using a case study of the UK power system
with significantly increased renewable generation. Scenarios
for net demand were constructed from historic data. Existing
demand and nuclear generation were assumed to remain
unchanged, and the renewable generation was scaled until
sufficient energy was available to satisfy all demand.

Three mediums of energy storage were investigated: Li-ion
batteries (Li-ion), compressed air energy storage (CAES), and
power-to-hydrogen-to-power (H2). These were chosen to rep-
resent short, medium and long-term storage respectively. The
assumed model for each of these technologies are displayed
in Table I, and the assumptions behind them are described in
the Appendix. The units of s are in % self-discharge per hour,
α and β are measured in $/MWh of charge or discharge, and
γ is measured in $/MWh of installed capacity.



TABLE II: The demand parameters used for the simulation.
The t = 1 dates correspond to the first day of historic data
used for the year long simulation in the scenario.

t δt kt

1 − 96 1 105

97 − 127 24 105

128 − 164 168 105

Ns t = 1

1 1-Jan-17
2 1-Feb-17
3 1-Mar-17
4 1-Jan-18
5 1-Feb-18

Ns t = 1

6 1-Mar-18
7 1-Jan-19
8 1-Feb-19
9 1-Mar-19
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Fig. 1: Optimal sizing and throughput of the storage assets.

The demand related parameters are displayed in Table II.
Three different timescales are included: hourly, daily, and
weekly. The simulation has a time horizon spanning one
year which is split into: 96 hours, 31 days, and 47 weeks.
Nine scenarios are considered, using the years 2017-2019 and
considering three different start points for each year. This
means that the scenarios capture both seasonal and day-to-
day variability. For all timescales, the price of unmet demand
is taken to be 100, 000$/MWh – chosen such that demand
suppression is only practically employed to prevent computa-
tional infeasibility. In reality, demand suppression may be cost
competitive with energy storage, but as this could significantly
effect the sizing of the system, this option was not included
for this case study.

Figure 1 shows the optimal sizing (left) and usage (right)
of each storage asset in the minimum cost case. The H2

storage has the largest capacity, however the Li-ion has a
much higher throughput. This result makes sense given the
parameters in Table I; H2 has a low cost and a low self
discharge rate, so it is suited for storing large amounts of
energy for long periods, while Li-ion has a low marginal cost
and high efficiency, making it suited for high-cycle use. CAES
has a comparatively small capacity and throughput, suggesting
that, with the chosen parameters, it is rarely cost competitive
with the other two storage modes.

The deployment of the individual assets can be further un-
derstood by considering the average charging and discharging
profiles throughout a typical day. Figure 2 shows the average
24 hours across all the time and scenarios. The red line shows
the net demand (the demand minus the energy generation).
Shading above the red line indicates charging, while shading
below indicates discharging. In practice, a single storage
asset will never be simultaneously charging and discharging,
however this figure looks at an average over multiple days.
Similarly, discharging will only occur when the net demand
is positive. Li-ion can be seen to both charge and discharge
throughout the day, with the most significant charging hap-
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Fig. 2: Average deployment of storage throughout 24 hours.
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Fig. 3: Variation in storage sizing with amount of supply.

pening to coincide with the solar peak. Whereas, H2 charges
slowly throughout the day and occasionally discharges to meet
the evening peak demand.

Naturally the results of this case study will depend signifi-
cantly on the storage parameters selected. However, they will
also depend on the assumed generation profile, and the remains
of this section explores the effect of generation choices on
optimal storage requirements.

Conversion losses mean that, in order to meet demand
with variable generation and storage, an oversupply of energy
is required. The amount of excess energy will effect the
minimum cost storage solution. Figure 3 shows the change in
optimal storage capacity as the over-supply factor (i.e. the ratio
of supply to demand) increases. As expected, the total storage
requirement decreases as the over-supply factor increases. This
decrease is dominated a the reduction in Li-ion, likely due to
the decreasing need for intra-day storage. H2 requirements do
not change significantly with the over-supply factor. This could
be because the requirement for this storage is driven by rare
renewable droughts (e.g. long dark still periods) which are
not corrected by scaling up generation. CAES is installed in
small amounts between an over-supply of 1.4 and 1.6, but in
amounts difficult to see on this scale, zero CAES is installed
outside of these bounds.

The previous results all assumed a uniform scaling of the
UK’s existing renewables. However, wind and solar have very
different diurnal and seasonal profiles, and so their relative
size is also likely to effect the optimal mix of energy storage.
Figure 4 shows the variation in optimal storage capacity with
ratio of wind to solar generation, assuming a constant over-
supply ratio of 1.5. The total energy storage requirement
decreased very slightly as wind becomes more dominant,
but the share of Li-ion increases significantly. This could be
explained by the fact that the UK has a stronger seasonal
variation is solar irradiance than wind speed, increasing the
need for long-term storage.
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Fig. 4: Variation in storage sizing with ratio of wind to solar
generation.

IV. CONCLUSION

In this paper we proposed a convex formulation for optimal
sizing of a portfolio of energy storage which includes multi-
ple timescales of storage. Using simplifications for the self-
discharge, charging, and discharging rates, the deterministic
problem was formulated as a linear programming problem,
and then extended to a stochastic optimization problem using
a scenario based approach.

The algorithm was demonstrated using a case study of
the GB electricity system, with renewables scaled to meet
the majority of demand. Three specific storage technologies
were considered: Li-ion battery, hydrogen, and compressed air
storage, over three timescales: hourly, daily, and weekly. With
the parameters considered, the optimal system was formed of a
large long-term hydrogen storage and smaller high-use Li-ion
store. Compressed air was only found to be cost-competitive
in small amounts and specific circumstances. A sensitivity
analysis revealed that the size of the battery storage was highly
dependent on the sizing of the renewable generation, and
the ratio between the hydrogen and battery storage depended
strongly on the ratio of wind and solar generation.

APPENDIX

This section describes the assumptions used to derive the
parameters in Table 1. Note that electricity costs have been
ignored as the source of electricity is common between the
storage technologies. For Li-ion the parameters were selected
according to the four hour grid-scale system in [22]. The
CAES system was based on the A-CAES system in [23] it
was assumed that the variable costs were split evenly between
charging and discharging. For hydrogen storage the costs
depend heavily on the sizing of the respective components. The
one in this paper used an electrolyser [24], salt cavern [25],
and turbine [26] with a 1 kW : 80 kWh : 1.9 kW size ratio,
resulting in a slow but cheap system.
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