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Abstract—Optimal power flow (OPF) seeks to minimize the
cost of electric power generation subject to physical constraints.
The objective function in the OPF problem is typically defined
in terms of dollars, and not in terms of environmental objectives
such as plant emissions. However, the mix of generators that
result in the lowest system cost does not always fully correlate
with the mix of generators that result in the lowest system
emissions. This can be further exacerbated under a DC OPF
framework, which utilizes slack bus generators (often fast-
ramping gas plants) to ensure AC feasibility. This paper analyzes
the difference in emissions under different power flow models
to quantify how cost-based objectives in OPF have impacts on
the resulting system emissions. The IEEE 118-bus system is
considered as our initial test case, using demand data from
CAISO. Our results indicate that the choice of slack bus(es) can
heavily influence the difference in emissions. We also propose an
alternative DC OPF framework which reduces utilization of the
slack bus (thus reducing emissions) and avoids possible constraint
violations.

Index Terms—Optimal power flow, carbon emissions, con-
straint violations

I. INTRODUCTION

The canonical optimal power flow problem (OPF) typically
aims to minimize the cost of (active power) generation subject
to system constraints. The complete AC optimal power flow
formulation is challenging to compute on large power grids
(which may have tens of thousands of buses). Therefore, ap-
proximate or relaxations of the formulation are typically used
in practice (e.g. [1]). However, the choice to move to a non-
exact power flow methods has well-documented consequences
on system cost – which vary between networks [2], [3].

Ambitious goals have been set for decarbonization of the
power sector – for example, the U.S. government has set a
target of a zero carbon power grid by 2035 [4]. Achieving
this will require policy changes to incentivize a shift away
from carbon-intensive generation sources [5]. Currently, the
cost considered in the OPF formulation does not directly
account for carbon emissions produced from each generator.
The carbon emissions per unit of electricity generated varies
significantly between generator types. It is well-known that
historically, the generators that are dispatched in OPF do not
always correspond to the mixture of generators that result in
the lowest level of system emissions [6].
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Previous work has proposed new dispatch methods which
take into account carbon emissions [7]–[9] or new pricing
mechanisms such that prices are forced to better reflect emis-
sions [10]. However, here we seek to quantify the differ-
ence in emissions that results between exact and non-exact
methods for dispatch. This is distinct from these previous
efforts, because we do not seek to directly influence carbon
emissions, rather to better understand the consequences of
using approximations for the full OPF problem.

Thus, in this paper, we analyze how the underlying power
flow model within the OPF impacts resulting emissions from
generation. In addition to comparing the AC OPF with a DC
OPF (with AC power flow to ensure feasibility), we also
develop a third alternative. This method still utilizes the typical
DC OPF formulation, but includes a second stage ensuring the
solutions is physically realizable with respect to the AC power
flow constraints. As a secondary insight, we further consider
constraint violations resulting from the standard DC OPF with
AC power flow. These violations, in practice, typically result
in an iterative procedure where the DC OPF is run multiple
times with additional constraints.

II. BACKGROUND

In contrast to other commodities such as water or oil,
electric power cannot be easily stored and must be generated
on demand. The imminence of electrical usage creates the
need for an Independent System Operator (ISO) which is an
organization that can monitor shifts in demand on the grid and
respond in a safe, reliable, cheap and feasible manner. ISOs
can accomplish this by iteratively solving Optimal Power Flow
(OPF) problems. However, the non-linear, non-convex nature
of the complete AC OPF presents challenges in practice –
the most salient of these including convergence issues and
calculation time.

To address these challenges, many ISOs use DC OPF
approximation of the AC OPF problem and then subsequently
solve an AC power flow (PF) to account for losses and ensure
voltage constraints are met. While this method is beneficial
in its relatively fast computation time and straightforward
derivation of prices, it may produce sub-optimal solutions
– potentially costing billions of dollars annually [11]. Ad-
ditionally, the DC OPF results in dispatch solutions that do
not satisfy system constraints [12], necessitating the need for
subsequent AC PFs until AC feasibility is achieved. More



robust solution techniques to the AC OPF problem have been
developed over the past years, reviewed in [13], [14], that
unlock the potential for ISOs to preferentially utilize AC OPF
solutions rather than the DC OPF approximation. Here we
study the consequences of the choice of OPF technique on
the system carbon emissions.

III. METHODS

In this section, we first introduce the methods by which
the parameters of our test network are scaled to achieve
realistic results. Then three generator dispatching methods are
introduced, which each aim to minimize cost. Finally, the
method for quantifying the emissions produced from each
dispatch solution is explained.

A. Network scaling
We consider a test network with nb buses, ng generators,

and nl loads. In order to simulate a realistic loading scenario,
fifteen minute demand data was taken from the California ISO
(CAISO). We scale the network loads linearly, preserving the
test networks’ spatial load distribution. The factor, λ, by which
the data was scaled down by is defined by:

λ = c ∗
∑ng

g Pmax
g

ρpeakd

, (1)

where Pmax
g is the max power in megawatts that generator g

can produce and ρpeakd is the peak demand in megawatts in a
24 hour period of the CAISO data. The constant 0 < c < 1
is introduced to simulate some level of oversupply (i.e. to
ensure that peak demand is less than peak supply). Without this
scaling factor, the optimization problem would not be able to
converge near the peak demand because the system would not
have the capability of providing the extra power for line losses.
We assume that the power factor of the loads does not change,
meaning that the reactive loads are scaled proportionally to
the real loads. Thus, the re-scaled real and reactive loads l are
given by:

Pd lt =
P ′
dl∑nl

l P ′
dl

∗ λρd t (2)

Qd lt =
Q′

dl

P ′
dl

∗ Pd lt (3)

Values P ′
dl and Q′

dl are, respectively, the original active and
reactive power demand (in megawatts) at load l from the stan-
dardized system. Similarly, Pd lt and Qd lt are, respectively,
the active and reactive power demanded at load l at time t. The
variable ρd t corresponds to the CAISO 15 minute demand
data in megawatts at time t. Equation (2) ensures that the
demand at a single load remains at a constant proportion to the
total demand on the network. Likewise, equation (3) ensures
that the ratio of active to reactive power remains constant.

B. Dispatching Methods
Once the network loads have been resized, we need to dis-

patch generation which meets the demand at lowest cost, while
respecting system constraints. Here, three separate methods are
considered.

1) AC Optimal Power Flow: The first method we consider
is using AC optimal power flow (AC OPF), which is assumed
to be the “ground-truth” model for how the power system
behaves. This method generally considers a quadratic cost
objective for generation, such that we aim to minimize:

f(Pg) =
∑
g

cg0 + cg1Pg + cg2P
2
g , (4)

where cg1 , cg2 are the linear and quadratic cost terms of gener-
ator g respectively, and cg0 are fixed costs. The constraints of
the problem are the AC power flow constraints [14] which
include constraints on bus voltage magnitude and thermal
limits of lines and transformers. The thermal limits include
both quadratic and multiplicative terms, thus resulting in a
non-convex problem.

2) DC Optimal Power Flow: The second method we con-
sidered was DC optimal power flow (DC OPF) a commonly
used first order approximation of the AC OPF problem which
has been shown to provide a reasonable representation of the
power system under normal conditions [15]. Here we consider
the same objective function (4) as above. One of the major
assumptions of the DC OPF problem is the use of a linear ap-
proximation for the thermal limits while neglecting the voltage
limits (as variables for voltage magnitude are not included).
This means that the solution of the DC OPF necessarily does
not satisfy the AC power flow constraints [12]. However, due
to its convexity and significant computational benefits over AC
OPF, this method is commonly used in practice. In order to
solve the AC infeasibility of our DC OPF solution we run
a power flow problem, where the generator outputs are fixed
and a Newton-Raphson method is used to find a solution which
satisfies the AC power flow constraints. In order to compensate
for the difference in needed generation, a generator on the
slack bus of the network (or slack buses) are used.

3) DC Nearest Feasible Point: In this alternative method,
we consider a dispatch which first uses DC OPF, but then
finds the nearest AC feasible point. This method combines the
dispatch decisions from the DC OPF problem, which are often
used in ISO market clearings, with the physical feasibility of
the AC OPF. Additionally, it allows us to comment on how
the performance of the DC OPF dispatch is effected by the
lack of feasibility. Here, we run a second optimization which
seeks to minimize distance from the DC OPF dispatch, hence
minimizing:

f(Pg) = Σng
g (Pg − P ′

g)
2 (5)

where P ′
g are the DC OPF generator outputs. Expanding this

equation and disregarding the constant terms (which have no
impact on the optimal solution) yields:

f(Pg) = Σng
g P 2

g − 2P ′
gPg . (6)

This objective is minimized subject to the AC OPF constraints,
which can be performed in PandaPower by adjusting the
generator constant and quadratic objectives.



C. Emissions Calculation

The generator output solutions are then used to determine
the tons of CO2 equivalent (tCO2e) per fifteen minutes pro-
duced by the system at time t. These emissions are represented
by ϵt below:

ϵt =

ng∑
g

εgPgt ∗ 0.25 , (7)

where Pgt is the active power (in MW) generated by generator
g at time t, εg is the emissions factor (in tons of CO2e per
MWh) associated with generator g, and 0.25 converts MW
into MWh. The emissions factor is determined by the type
of generator (these are defined in the test cases). Here we use
the standard emissions factors provided for each generator type
from the National Renewable Energy Laboratory (NREL) [16].

IV. RESULTS

Our methods are tested using a case study of the IEEE
118 test system and generator types from [17]. Solutions were
computed using the Pandapower [18] toolbox in Python, which
uses a Newton-Raphson-based iterative method. We use the
CAISO demand for the 24-hour period on June 30th, 2022,
and consider the three dispatching methods described in the
previous section.

Fig. 1: Generation costs and emissions over a single day
simulation for each of the three dispatch methods considered.

Figure 1 shows the total generator cost (navy blue) and
CO2 emissions (light blue) that resulted from each of the
three dispatch methods. As was to be expected, the AC OPF
has the lowest cost solution – this was the only formulation
which did not have a secondary adjustment stage. It also has
the lowest emissions, which might be because many of the
cheapest generator types are also those with the lowest level
of carbon emissions.

The other two methods both initially use DC OPF to
determine the generator outputs. The difference between them
is the way in which they handle the infeasiblity of the DC
constraints. The DC OPF with AC power flow method fixes
generator outputs and utilizes the slack bus generator to solve
any power imbalances. Whereas, the modified AC OPF alters
all of the generator outputs to find the closest feasible point.
Figure 1 demonstrates that the latter is both the cheaper and

lower carbon alternative. This is because for the 118-bus test
case the slack generator is coal, which is both high cost
and high carbon. Slack generators are chosen that can ramp
up quickly, meaning that a dispatchable, non-renewable slack
generator is likely common. By distributing the required slack
across all generators on the network, we do not require such
steep ramp rates. This suggests that this second method should,
more generally, result in lower emissions (rather than just in
the 118 test case), since slower ramping generators can be
used to correct for AC feasibility.

Fig. 2: Profiles of emissions at 15 min resolution throughout
the 24h for each method.

Figure 2 shows how the emission produced by each method
are distributed throughout the 24 hour period. We can see that
the DC OPF methods are consistently higher emission than
using AC OPF. This difference is most significant at peak
demand time, which might be because the network is highly
constrained at this time.

Fig. 3: Generation costs (left) and carbon emissions (right) per
15 minute period over a single day simulation for each of the
three dispatch methods considered.



Additionally, in Fig. 3, CO2e emissions per MWh are
provided. This reiterates the findings from Fig. 2, and provides
further context that, even when a larger generation capacity is
needed, dispatch methods using a power flow correction result
in a higher emissions per MWh of generation. The cost per
MW is also provided in Fig. 3, while the cost does not show
significant differences per hour, the daily difference between
AC OPF and DC OPF with AC PF results in a $290, 992.66
difference – and is expected to be higher for a higher demand
day and larger network. Savings would additionally increase
in real power grid operations due to the availability of running
an AC OPF in real-time may reduce reserve margins that
are high in emissions [19]. The cost gap is also expected to
widen with a network incorporating renewable resources such
as wind and solar, since the AC OPF would select the lowest
cost generators. Using distributed slack buses may also have
a significant impact on pricing and emissions.

Another aspect which is not taken into account in the cost
and emissions analysis, is that the DC OPF with AC power
flow correction does not ensure that the voltage constraints are
met. While only varying one generator on the network and
needing to meet a defined mismatch in supply and demand,
there is not additional flexibility to protect voltage constraints.
In Fig. 4, test-case 118 is shown at its peak demand for June,
30th (7972.96 MW) with the DC OPF and AC power flow
correction shown on the left, and the AC OPF on the right.
In the AC OPF case all bus voltages are within the required
bounds, while in the DC OPF with AC correction there exist
multiple buses with under-voltages. The DC OPF case also
has a significantly larger voltage drop across branches (a
much greater difference in color can be seen between two
connected nodes). Given that most nodes are load buses, this
demonstrates that the losses in the network would be much
higher than in the AC OPF case. Therefore, using the DC OPF
method may also result in unwanted power quality issues.

Fig. 4: A visual representation of voltage magnitude in the
118-Bus network at peak demand. Left is shown the DC OPF
with AC power flow correction and right is shown the AC
OPF.

TABLE I: Performance of the considered methods in terms of
cost, emissions, voltage violations, and computation time.

Metric AC OPF AC ALT DC OPF w AC
Emissions

(Tons of CO2e) 11,490.61 13,603.82 16,005.74

Cost $21,196,158.05 $21,342,705.07 $21,487,150.71
Voltage Violations (#) 0 0 181
Computation Time (s) 2.25 2.24 0.25

Further, Fig. 5 shows the magnitude of voltage violations
over the 24-hour period, as the height of the bars depicts
the largest voltage violation on the network at each time
step, the color of the bar depicts the number of voltage
violations on the system. Again, this demonstrates that DC
OPF with AC power flow correction has greater severity and
quantity of voltage violations during peak demand hours when
the network is strained. All of the voltage violations violate
the minimum voltage constraint as opposed to the maximum
voltage constraint. A summary of the number of violations,
cost, and emissions are provided in Table I. It can be seen
that AC OPF significantly outperforms DC OPF in all metrics.
However, including the alternative objective rather than a stan-
dard power flow correction eliminates constraint violations,
and achieves approximately half the possible reduction in
both cost and emissions. Other violations investigated were
line overloads, but no line overloading was observed for any
of the three dispatch methods. We see that the DC OPF
method results in the lowest computational cost, and we expect
the cost savings to scale non-linearly with network size. We
expect that at this network size, the benefits of the faster AC
OPF are marginalized by needing to run two optimization
schemes. However, for larger networks we would expect a
more significant savings.

Fig. 5: Magnitude of the worst voltage violations over the day
for the DC OPF with AC power flow dispatch

Findings for this study conclude that using more advanced
dispatch methods may result in cost savings, less emissions,
and no expected voltage constraint violations compared to the
status quo of DC OPF with AC PF correction, typically used
by grid-operators due to ensured feasibility and being less



computationally intensive. This presents a case for a software
upgrade to the grid, but also an opportunity for electric power
decarbonization efforts [20].

V. CONCLUSION

Overall, the findings suggest that current dispatch methods
implementing power flow corrections to ensure AC feasibility
often rely on high carbon generation sources. The AC OPF
(assuming to require no power flow correction), results in the
lowest carbon emissions and price. This is because the AC
OPF selected generation resources that have low prices, but
these sources in the considered test case, also have low carbon
emissions associated with energy production. However, the AC
OPF comes at a high computational expense and nonconvexity.

Whereas, the traditional approach of using DC OPF with a
AC power flow correction, results in the highest carbon emis-
sions and price in the chosen test network. A middle ground is
found using a proposed alternative method, where the DC OPF
is run but the correction seeks the nearest feasible AC point.
This is distinct from using an AC power flow correction, where
generator outputs are fixed, because the generator outputs
are adjusted in order to meet AC feasibility. The proposed
method significantly reduced both cost and carbon emissions
– highlighting the impact of the slack generator on both price
and carbon emissions. Thus, if using DC OPF it is suggested to
distribute the slack throughout the network rather than relying
on a single slack bus – given the nature of slack generators
being quick ramping, high cost, and high carbon generation
sources.

Previous works, including [21], which uses a non-linear
optimization problem to select the best slack bus, suggest
that having a single slack bus in a network minimizes power
imbalance in load flow studies. Thus, future studies may
consider CO2 emissions in the selection of a slack bus, and the
impacts on dispatch methods. Further, future studies should
consider a comparison of dispatch methods, feasibility, and
computational intensity on realistic grid models. While this
study did consider an alternative to traditional AC or DC
dispatch methods, other methods that ensure AC feasibility
could be considered to reduce computational cost for realistic
grids [22]. Further, it is suggested to consider a more tem-
poral approach, considering longer time spans and seasonal
variations – particularly periods when the grid may be under
stress. Temporal carbon coefficients from the NREL tool
Cambium could then be used to better account for generation
efficiency and losses, but also scenario-driven emissions due to
climate change and policy to better understand the relationship
between carbon emissions, price, and dispatch methods.
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