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Abstract

A rapid increase in the number of electric vehicles is expected in coming years, driven by government
incentives and falling battery prices. Charging these vehicles will add significant load to the electricity
network, and it is important to understand the impact this will have on both the transmission and
distribution level systems, and how smart charging can alleviate it. Here we analyse the effects that
charging a large electric vehicle fleet would have on the power network, taking into account the spatial
heterogeneity of vehicle use, electricity demand, and network structure. A conditional probability based
method is used to model uncontrolled charging demand, and convex optimisation is used to model
smart charging. Stochasticity is captured using Monte Carlo simulations. It is shown that for Great
Britain’s power system, smart charging can simultaneously eliminate the need for additional generation
infrastructure required with 100% electric vehicle adoption, while also reducing the percentage of
distribution networks which would require reinforcement from 28% to 9%. Discussion is included as to
how far these results can be extended to other power systems.
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1. Introduction at home — early observations show home charging
accounts for 87% of charging sessions [4]. This
means vehicles will be connected at the grid edge,
and therefore will impact the whole electric power
system. Domestic EV charging will drastically in-
crease household demand for electricity [5], and it
is expected that the existing early evening peak in
demand will be exacerbated [6]. This could lead
to a variety of problems for the power system, at
both the transmission system level [7], and the
distribution system level [8].

Electricity supply is commonly divided into
three stages: generation, transmission, and dis-
tribution. The power generation system encom-
passes the production of electricity and the alloca-
tion of required demand between producers. The
transmission system transports the power from its
source to grid supply points using high voltage
transmission lines. These two systems are often
grouped, as they are both concerned with demand

This paper quantifies the impact that electric
vehicle (EV) charging will have on transmission
and distribution systems, and investigates how far
smart charging can be used to reduce the impact
on both systems.

Falling battery prices and government incen-
tives have led to a rapid increase in sales of elec-
tric vehicles (EVs) in the developed world. As
of Q4 2019, there were 259,000 EVs on the UK
roads [1], and this number is forecast to rise to
36,000,000 by 2040 [2]. The transition away from
internal combustion engines will play a vital role
in meeting the decarbonisation targets set in the
Paris Climate Change Agreement |3]. However,
charging EVs will add large loads to the exist-
ing electrical power systems. It is likely that the
majority of electric vehicle charging will be done
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and supply at the national level, and will be here-
after referred to as the transmission level system.
The distribution system connects homes to their
nearest grid supply point using a large number
of lower voltage circuits. In this paper, the low-
est voltage residential circuits in the distribution
network are focused on, as the impacts are ex-
pected to be worst at this point. The additional
demand created by electric vehicles will impact
each of these systems in different ways.

At the generation level, the peak demand is
likely to increase, which could violate the UK’s
supply constraints — meaning that, even with
maximum power generation, the demand can not
be met. This would necessitate installing addi-
tional generation capacity, likely in the form of
traditional fossil fuel power plants. A change in
the demand profile would also affect the mix of
fuels that are used, making it more challenging
to meet the UK’s commitments to increase the
percentage of electricity which is generated from
renewable sources [3]. The impact on the trans-
mission and distribution systems depends on the
locations of the additional load. If the load is
concentrated in a particular region, some trans-
mission lines could be forced to carry currents
above their rated limits, and the resistive losses
in the high-voltage network would increase. Dis-
tribution networks with larger amounts of vehicle
charging may experience problems. Each network
is connected to the higher-voltage system using a
transformer that is rated to a specific maximum
demand; if this would be exceeded, the trans-
former must be replaced. Resistive losses will
also increase, resulting in a greater voltage drop
across the network. Appliance safety requires bus
voltages to stay within £10% of the unitary volt-
age [9], so if the voltage drop increases too dra-
matically then an intervention by the network op-
erator is required.

Vehicle and electricity use varies significantly
geographically; employment [10], building struc-
ture [11], and public transport access level [12] all
affect the behaviour of consumers. Diversity in
behaviour has a cancellation effect, resulting in a
lower aggregated peak demand than might be ex-
pected. However, the behaviour of consumers liv-

ing in the same area is likely to be correlated 13|,
so the local diversity may be less than the na-
tional diversity. Therefore, in order to accurately
estimate the future load on a system, the spatial
heterogeneity of vehicle and electricity use must
be taken into account.

A number of studies have been done investi-
gating the effects of domestic EV charging on a
single part of the system. At the transmission
level, changes to peak demand [14] and energy
consumption [15] have been forecast. However,
transmission line loading has not been investi-
gated (as this requires the location as well as size
of the load to be estimated). At the distribution
level, a large number of case studies have been
carried out which quantify the effect of EV charg-
ing on transformer loading [16], voltages [17], and
losses [18] using a single network case study. How-
ever, these results can not be extrapolated to rep-
resent the impact on the whole distribution sys-
tem; the variation in network structure, vehicle
use, and demand must be accounted for. There
have been analyses of sections of distribution net-
work in Queensland, Australia [19] and the San
Francisco Bay Area [20| which take into account
geographic variation in travel behaviour. How-
ever these use computationally and data inten-
sive methods which can not be scaled to a larger
distribution system. In addition to not incorpo-
rating spatial heterogeneity, none of these studies
simultaneously study both levels of the system.
Given that the individual studies all use different
assumptions and data sources, this makes it diffi-
cult to compare the severity of the impact of EV
charging on each level.

It is anticipated that ‘smart charging’ — coor-
dinated scheduling of the charging time and power
of EVs — will be used to reduce the impact of EVs
on power systems. The UK Government has an-
nounced that all subsidised home charge points
must be smart from July 2019 [21]. However, it
has not been determined how these chargers will
be coordinated.

A variety of algorithms have been proposed for
controlling vehicle charging. Many take the form
of formal optimisation problems, and can be cate-
gorised according to their control hierarchy, objec-
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tive, and the constraints they take into account.
Control can either be centralised, where one actor
schedules the charging of a group of EVs, or de-
centralised, where EVs control their own charging
in response to a price signal [22]. The proposed
objectives include: flattening load [23], minimis-
ing losses [24], reducing phase imbalance [25], and
maximising the consumption of renewables [26].
Most algorithms include an energy constraint,
which ensures that vehicles achieve the appropri-
ate level of charge. However, some include addi-
tional constraints — for example on the network
operation [27] or the battery temperature [28].

Alternatively, some propose that charging
should be optimised through a market mecha-
nism, where flexibility is sold to the system op-
erator. For example, [29] proposes a strategy
for bidding in the wholesale market, [30] looks
at providing frequency regulation with EVs, and
[31] proposes a method for matching markets with
contracts for EV smart charging.

Given the volume of different solutions that
have been proposed, there is a risk of different
actors making opposing requests of the same ve-
hicles. For example, a distribution network opera-
tor could request a decrease in charging to prevent
local under-voltages, while the transmission sys-
tem operator tried to increase charging to raise
the system frequency. Some smart charging al-
gorithms take this into account, for example [32]
includes constraints set by both the transmission
and distribution system operators. However, this
conflict has not been taken into account in impact
assessments, meaning that the optimal operation
of both systems is considered independently.

Previous analysis has either investigated the
potential for smart charging to reduce peak de-
mand at the transmission system level (e.g. [33]),
or to alleviate the need for infrastructure upgrades
within local distribution networks (e.g. [34]). De-
spite the coupling between these system levels, so
far they have been considered in isolation. How-
ever, in practice a single objective must be cho-
sen for smart charging — so it will not be possible
to achieve these optimal scenarios simultaneously.
This may have serious implications when it comes
to smart charging, because optimising charging

for one level of the system may have a detrimen-
tal effect on operation at the other level.

This paper addresses the identified gaps in the
existing literature in the following ways. Firstly,
spatial heterogeneity of vehicle use, electricity de-
mand, and network structure are incorporated
into analysis of the impacts of EV charging on
the system. Secondly, the scale of the impact
of charging on the transmission and distribution
level systems are directly compared and the date
of necessary intervention is estimated in each case;
this is achieved using a consistent set of modelling
assumptions for the uncontrolled and controlled
charging of EVs. Thirdly, the conflict between the
optimal charging schemes for the system levels is
quantified, and the degree to which both systems
can be protected simultaneously is investigated.
This analysis is vital for network operators, policy
makers, and researchers to understand the desired
action of smart charging from a whole system per-
spective.

The focus of this paper is on the security of
supply in the power system. That is to say, all
analysis focuses on the extent to which the addi-
tional demand from EVs can be met without re-
quiring network reinforcements. Security of sup-
ply is one of the three core dimensions which make
up the World Energy Council’s definition of en-
ergy sustainability — often referred to as the En-
ergy Trilemma [35]. The other two are energy
equity (which defines the electricity cost and how
fairly it is shared) and environmental sustainabil-
ity (which covers the carbon intensity of the sys-
tem). The addition of EV charging would likely
impact all three dimensions, however analysis of
the second two is out of the scope of this paper.

The remainder of the paper is structured as
follows. In Section 2.1 the data sources used to
simulate the geographic variation in vehicle use,
electricity demand, and network structure are pre-
sented. Section 2.2 describes the models used to
estimate regional EV penetration and the aggre-
gated charging profiles. In Section 2.3 the frame-
works used for transmission level and distribution
level simulations is formulated. The results of the
analysis is presented in Section 3 — looking first at
the transmission level and distribution level sys-
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tems in isolation, then considering the conflict be-
tween them. Sections 4 and 5 conclude the paper.

2. Methodology

2.1. Data sources

A variety of data sets are required in order to
analyse the impacts of EV charging on the power
system. This section describes the data used
to capture geographic variation in vehicle use,
existing electricity demand, and network struc-
ture. The datasets described are all for the GB
case study, so equivalent data would need to be
sourced in order to apply this methodology to an-
other power system.

2.1.1. Vehicle Use

The impact of EV charging of the grid depends
strongly on the timing of the new demand in re-
lation to the existing demand for electricity. Pre-
dicting this requires understanding of the amount
of energy vehicles are consuming and when they
are likely to charge. Two sources of vehicle use
data are utilised in this analysis; usage data from
a EV trial [36], and a larger set of travel survey
data [37]. While the survey data does not include
charging information (as it is based on conven-
tional vehicles) the vehicle use captured is rep-
resentative of the country’s travel as a whole —
whereas the trial data is likely to describe early
adopter behaviour.

2.1.2. Electricity Demand

Understanding the current use of the electric-
ity system is important to evaluate the impact
charging will have. Therefore several sources of
data were used, which describe the UK’s electric-
ity demand at various levels of aggregation. For
national demand, historic real data is available at
5 minute resolution from [38]. A breakdown of the
non-commercial and industrial load was inferred
using the Elexon standard profiles [39], alongside
aggregated annual meter readings from the cen-
sus areas [40]. Finally, some 1 minute resolution
household loads from a UK trial [41] were used to
simulate residential networks.

2.1.3. Networks

The effect of charging on losses, line loading,
and voltages in a network, will be specific to the
topology and impedances of that network. In this
paper, two network models were used to investi-
gate impact. First, a reduced version of the GB
transmission network was utilised which was for-
mulated in [42]. Secondly, three example 3-phase
residential networks are used to quantify the ef-
fects of vehicle charging on distribution networks,
each representing a different network style. The
networks were taken from [43], and are shown in
Figure 1. They were purposefully selected to rep-
resent a typical network from rural, suburban,
and urban areas respectively. The blue circular
markers show the locations of households, and the
black hexagonal marker shows the substation lo-
cation.
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Figure 1: The test networks used. Blue markers show
the household locations and the black marker shows the
substation position.

2.2. Modelling

This section details the models used to es-
timate regional EV penetration and the aggre-
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gated charging profiles under both uncontrolled
and controlled charging.

2.2.1. EV Penetration Projection

Regional vehicle registrations, including the
number of ultra low emission vehicles, are
published by the Driver and Vehicle Licens-
ing Agency [44]. The percentage of vehicles
which were fully electric was assumed to grow
in each area according to an s-curve, which are
often used to model technological transitions [45].
These curves have the form:

1

0 =1

where «, 3 are area specific parameters which
must be learned from the data. Figure 2a shows
an example of the curve fitting process, where the
markers show the data and the blue line show the
fitted curve. Figure 2b then shows the assumed
penetration of EVs regionally in 2030.
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Figure 2: Projecting regional EV penetration using s-
curves.

2.2.2. Uncontrolled Charging

Historically, the lack of real-world charging
data has meant that simplistic assumptions were
made for charging, such as that all vehicles be-
gin charging at once [46], or that charging begins
immediately after the completion of the last jour-
ney [47]. However, a number of EV charging trials

have now been completed in the UK — for exam-
ple My Electric Avenue [36] and Network Revolu-
tion [41] — so higher fidelity modelling techniques
are possible. Some research uses trial data di-
rectly to estimate the impact of vehicles on the
power system [48], however the limited size of the
trials mean that they likely capture a biased set of
driving. Here the uncontrolled charging scenario
is modelled using a stochastic model developed by
the authors in [49]. This model essential maps the
charging observed from the EV trial data onto the
vehicle usage captured in the survey data. This al-
lows the geographic variation in the travel survey
to be included without making simplistic assump-
tions concerning charging. For the conventional
vehicle data, distance is converted into energy ex-
penditure using a conversion of 0.26 kWh /mile for
rural areas and 0.35 kWh/mile for urban areas —

based off analysis of the consumption of a Nissan
Leaf in [50].

2.2.3. Controlled Charging

The perfect controlled charging scenario is cal-
culated using an optimization problem. The ob-
jective is to flatten the total load profile, given
knowledge of the existing electricity demand. It
was assumed that only uni-directional charging
was available at a maximum rate of 7 kW and
with a 90% efficiency. Mathematically, the op-
timisation objective to be minimised can be de-
scribed as:

fla) = (d+ Z i) (1)

where x;; represents the charging power of vehi-
cle 7 during time period ¢, and d; represents the
existing electricity demand at that time. Each ve-
hicle’s charging profile must satisfy the following
constraints:

Ne Z At xy; = B, (2a)
t

0 S I S Pmax YVt € Ti, <2b>

where E; is the energy required by the EV, At
is the length of a time period, 7. is the charg-
ing efficiency, P, is the rating of the charger,
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and T,; contains the set of times where the vehi-
cle is available to charge. Therefore, (2a) ensures
the vehicle receives the required SOC, and (2b)
imposes the limits of the charger. The resulting
problem takes the form of a quadratic program
and can be solved using standard solvers such as
cuzopt [51].

2.3. Simulation construction

This section describes the formulation of the
simulations which will be carried out at the trans-
mission level and distribution level.

2.3.1. Generation & Transmission Simulations
For simulations at the generation and trans-
mission level stochasticity is not considered; at
this level of aggregation the variance in vehicle
behaviour will be very low. Instead a single worst
case day is modelled, where the peak demand is
highest — for GB, this is the coldest winter day.
The simulations are constructed using the travel
survey data scaled to represent the total GB pop-
ulation. For the transmission case, a separate
simulation was constructed for each grid supply
point, where the vehicles based in areas serviced
by that point were extracted from the data. Load
flow and optimal dispatch for the transmission
simulation were carried out in Pandapower [52].

2.3.2. Distribution Simulations

For the distribution network studies, the high
level of variance means that stochastic analy-
sis is necessary. Separate simulations were con-
structed for each local authority in the UK. This
geographic resolution was chosen as a trade-off
between fidelity of results, and the size of the
travel survey data once broken down by area. For
each location, the relevant test network was se-
lected based on the local rural-urban classifica-
tion. Then a Monte Carlo simulation was run
by randomly adding scaled household demand
and vehicle charging profiles from the described
datasets. The household loads were scaled ac-
cording to the area’s domestic electricity demand,
and the energy to be charged was scaled according
to the local vehicle usage recorded in the travel
survey. At each iteration of the simulation, the

optimal charging profiles were calculated, then
the demand, losses and voltages in the network
are recorded under each charging regime. Bus
voltages and network losses were calculated using
power flow simulations run in OpenDSS [53].

Based on observations of real secondary trans-
former ratings in GB and the design criteria
in [54], one of three transformer limits was as-
sumed. For the smaller two networks a 315 kVA
transformer is assumed for locations where fewer
than 20% of households were on Economy 7 me-
ters, and 500 kVA otherwise. For the larger net-
work a 800 kVA transformer was assumed.

3. Results

Here the GB power system is studied to deter-
mine its best and worst case operation with do-
mestic charging of private electric vehicles. First,
the transmission level and distribution level sys-
tems are considered separately. Then, the conflict
between the system levels is investigated.

In each case three scenarios are quantified:
‘No Charging’ describes the situation before any
EV charging is added, ‘Uncontrolled’ predicts
the charging without any intervention, and ‘Con-
trolled” considers charging that is optimised to
flatten the total load on the system in question.
Two EV penetration levels are considered: 100%
and the projected regional penetration in 2030.

3.1. Transmission Level System

The transmission system will be impacted by
the aggregated charging of the national vehicle
fleet. In terms of generation capacity, the overall
national demand profile is of concern. However,
for transmission line loading the location of de-
mand relative to supply is also important.

Figure 3a shows the additional energy demand
of EVs in each local authority in 2030 and under
100% penetration. The 100% scenario demon-
strates that the energy demand of vehicles has
significant spatial variability across GB. Compar-
ison with the 2030 case demonstrates that some
of the worst affected areas in the 100% case will
be slow to adopt EVs. This means the heavi-
est loaded areas predicted for 2030 are not the
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same as those with 100% electrification. Figure 3b
shows the power demand profile on a cold winter
weekday with uncontrolled and controlled charg-
ing. Uncontrolled charging of a 100% electric fleet
would increase the peak demand (and hence re-
quired generation) by 8 GW, however controlling
charging can completely mitigate this increase.

The estimated winter demand profiles are sim-
ilar to those found in existing research; National
Grid (the GB transmission system operator) esti-
mates that in 2030 there will be an increase in
peak demand of between 2.6 and 8.6 GW, de-
pending on the level of smart charging and EV
penetration [55].

100%

02:00 07:00 12:00 17:00 22:00
2030

No Charging  --- Controlled
— Uncontrolled

02:00 07:00 12:00 17:00 22:00

(a) Additional energy (GWh)  (b) Power demand

Figure 3: The energy and power demand from the UKs
EV fleet in 2030 and with 100% penetration. (a) shows
the location of the additional demand and (b) the uncon-
trolled /controlled power demand profile on a winter week-
day.

Figure 4a shows the geographic distribution
of peak demand in the 100% uncontrolled charg-
ing case. Each bubble represents a grid supply
point whose size is proportional to the size of the
peak load through that transformer. Figure 4b
shows the loading of the high voltage transmission
lines resulting from this loading, as a percentage
of their rated maximum current. None of the lines
exceed their rated limit, and the majority of the
lines are well within their design specifications.
However, the security of the system is impacted.
The UK has a target of 100% N-1 supply security,
which means the demand could always be met if
the single largest piece of infrastructure fails [56].
The markers show the lines whose loading would
exceed their rating in the event of a failure of one
of the other lines. The areas of concern are pri-

marily in Scotland, where the system is at a lower
voltage.

N-1 Violations
O No Charging
O 2030 EVs
9 100% EVs

-100%

(b) Loading of lines

(a) Generation and loads

Figure 4: A reduced model of the UK transmission net-
work under the peak load of uncontrolled charging; (a)
shows the demand at each of the grid supply points, and
the proportion of that which is from EVs; (b) shows the
percentage of each line’s rated loading being used.

Note that the effect of storage and HVDC in-
terconnections have not been considered, so it is
possible that the demand could still be met by
utilising these resources.

3.2. Distribution Level System

In GB, residential low-voltage networks typi-
cally supply between 20 and 200 households with
power. These networks are connected with trans-
formers to the higher voltage distribution net-
work. Additional load can cause a variety of prob-
lems; if the peak demand on the network sur-
passes the limit of the transformer it must be
replaced, and resistive losses could result in un-
acceptably low voltages.

The impact of vehicle charging on the distri-
bution network will vary significantly according to
the local vehicles, households, and network struc-
ture. Therefore, here we consider the geographic
variation in the likelihood of either of the network
constraints being violated. First, we present the
load profile, voltage drop, and losses for a single
area, as an example to show the analysis we’ve
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completed for each local authority. Then, the es-
timated probabilities of a network constraint vi-
olations for each local authority in Great Britain
are presented.

3.2.1. Rochdale Case Study

The simulated load, losses and voltages for
Rochdale (a suburban area in Northern England)
are shown in Fig. 5. Figure 5a shows the to-
tal load on the network under each charging sce-
nario. The solid lines show the average load and
the shaded area covers the 95% confidence inter-
val. It can be seen that uncontrolled charging
significantly increases the peak load, due to the
coincidence of the charging and domestic peak
demands. Controlled charging achieves a mostly
flat load, and thus significantly reduces the peak
compared to uncontrolled charging. The esti-
mated transformer limit is 315 kVA, so a violation
is probable in the uncontrolled charging scenario
and possible with controlled charging.

No Charging Uncontrolled Controlled
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Figure 5: Load, losses, and voltages in an example net-
work. Solid lines show average values and the shaded area
covers the 95% confidence interval. The red dotted line
shows the network constraints. In (b) the box covers 50%
of the values, and the whiskers show the total range.

The losses associated with these loads are
shown in Figure b5b, where the blue line shows
the median loss, the box covers the interquar-
tile range, and the whiskers the total range. The
units shown here are kWh, it should be noted that
1 kWh = 3.6 x 10% J. In this case, uncontrolled
charging triples the resistive losses in the network
compared to the case without charging. Some of
this increase can be avoided by controlling charg-
ing, however the increase in load means that in-
creased losses are unavoidable. Resistive losses
cause voltage drops across the network, so a volt-
age reduction can be expected under all charging
scenarios. Safe system operation requires that the
network voltage stay between +10% of the uni-
tary voltage [9]. Therefore, voltage violations are
possible under uncontrolled charging, but unlikely
with controlled charging.

Controlled Controlled

(100%) (2030)
50% >50% 50% >50%

( —50% 0% (2030) —50%
4 ¢ ¢ ¢ ’
40% 40% 40% 10%
30% 30% 30% 30%
} 20% } 20% } 20% } 20%
10% 10% 10% 10%
0% 0% 0% )’ 0%

100%)
(a) Increased Probability of Voltage Violation (%)

Uncontrolled Uncontrolled
%) k

Controlled Uncontrolled Controlled
(100%) . (2030) (2030)

Uncontrolled
(100%)

4

- 0% - 0% )’ 0%
(b) Increased Probability of Transformer Violation (%)

Figure 6: The increased likelihood of violating distribution
network constraints in the UK, for charging of a 100% EV
fleet and in 2030.

3.2.2. Geographic Variation

It is expected that the impact of charging on
networks will vary significantly across the coun-
try. The probability of either a voltage or trans-
former violation occurring in each local authority
is shown in Fig. 6, for both 100% penetration and
projected in 2030. EV sales are currently very un-
evenly distributed across GB, so some areas are

April 25, 2022



likely to see a large penetration of EVs much ear-
lier than others. Figure 7a shows the percentage
of networks expected to experience each type of
violation as time increases. Under uncontrolled
charging transformer violations are more common
than voltage violations, however with controlled
charging the opposite is true.

Transformer Violations Voltage Violations

—— Uncontrolled
--- Controlled

_ N
v =]

-
o

Networks (%)

w

0 o 0Ll="
2020 2030 2040 2050 2020 2030 2040 2050
Year Year

(a) Percentage of networks expected to
have violations

Transformer Voltage
Stockton 91% Reading 51%
Eastleigh 90% Worthing 49%
Cannock  89% Sandwell 47%
Dudley 89%  Bristol 46%

(b) Worst affected in 100%

Transformer Voltage
Watford 84%  Watford 37%
Slough 79%  Worthing 33%

Gloucester 75%
Swindon 74%

Gloucester 33%
Birmingham 29%

(c¢) Worst affected in 2030

Figure 7: The percentage of networks estimated to expe-
rience each type of violation: (a) across all networks, as
time increases, (b) and (c) in the worst affected areas.

In [57] it is estimated that 33% of GB distribu-
tion networks will require intervention as a result
of EV charging, so these aggregated results are
consistent with previous estimates. It should be
noted that the 33% figure was not broken down
by type or location of failure.

The local authorities most likely to experience
either type of violation are displayed in Fig. 7b
and 7c. In the 2030 scenario, many of the same
areas appear on both lists; this illustrates that,
in the short term, the local penetration of EVs is
the most important factor in determining whether
reinforcements are necessary. In the 100% case
there is a strong correlation between areas’ trans-

former and voltage violations — meaning areas
likely to experience one, are also likely to experi-
ence the other. However, voltage violations were
more likely in densely populated areas with large
number of residents per household, while trans-
former violations were more likely in areas with
high vehicle ownership.

As discussed in Section 2.3.2, for each area
one of the three representative networks from Fig-
ure 1 is used for this analysis. It is worth noting
that this will introduce some error into the re-
sults. The network used for the most urban areas
(shown in Figure 1c) contained significantly more
households than the sub-urban and rural net-
works, and this influences the type of constraint
violations that are likely. Firstly, the larger num-
ber of consumers means that the diversifying af-
fect between consumers is more significant, mean-
ing extreme peaks in network load are less likely.
Secondly, the electrical distance between the sub-
station and furthest network is large, meaning sig-
nificant voltage drop across the network could be
expected. These combined factors mean that this
network is less likely to experience transformer
overloads and more likely to experience voltage
violations. Therefore, the higher incidence of volt-
age violations observed in densely populated areas
is at least partially related to the network struc-
ture. In fact, the four areas most likely to have
voltage violations all use the urban network in
Figure 1c. However, there were many areas which
used this network where voltage violations were
not encountered.

The differences between the rural and sub-
urban networks are less obvious. The rural net-
work has a slightly smaller number of consumers
than are less regularly distributed along the net-
work, but the effect this has will depend on the
applied loads. In general, areas where transformer
overloads were forecast were more likely to use
one of these networks. However, rural and sub-
urban areas have a significantly higher average
travel distance than urban areas, so this is more
likely to be an effect of the applied load.
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3.3. Conflict between systems

It is not possible to flatten load at both the dis-
tribution and transmission levels, due to the non-
flat industrial load supplied by the higher voltage
network. Therefore, the implications of control-
ling charging at each system level on the other
level must be understood. Figure 8a shows the
national load profile where charging is controlled
at either the transmission or distribution level.
When load is controlled at the distribution level
the total load in residential networks is flattened,
such that the values of d; in (1) represent the sum
of the household load in the local network. This
control scheme directly minimises the probabil-
ity that the local transformer becomes overloaded.
When load is controlled at the transmission level,
the national demand is flattened, such that d; rep-
resents the national demand profile. This has the
effect of minimising the national peak demand,
and hence the required generation capacity.

Flattening load in residential distribution net-
works results in a 6 GW increase in peak demand
— almost comparable to that seen with uncon-
trolled charging. Alternatively, Figure 8b shows
that purely flattening load at the transmission
level results in 19% of residential networks re-
quiring upgrades, compared with only 9% when
flattening at the distribution level. However, it
is possible distribution constraint violations could
be reduced while maintaining an optimal load at
the transmission level.

From Figure 6 it can be seen that many ar-
eas will not suffer constraint violations under any
charging scenario, meaning that peak demand in
these networks can withstand an increased load
without upgrades. Therefore, an alternative con-
trolled charging scenario was investigated where
networks are ordered from most to least con-
strained, and allocated charging so as to flatten
national load without violating their constraints.
The most constrained networks will still be con-
trolled to flatten the load at the distribution level.
The least constrained networks offset the load in
other networks in order to minimise national peak
demand. Figure 8c shows the resultant national
demand profile, broken down into industrial, do-
mestic, and charging load. This profile achieves
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Figure 8: The implications of optimising charging for ei-
ther the distribution (D) or transmission (T) system, and
a national demand profile that heuristically optimises both
systems, broken down by type of load.

an near-optimal transmission level load without
increasing distribution network constraints. This
suggests that smart charging, if appropriately im-
plemented, could protect the GB system at both
the transmission and distribution levels simulta-
neously.

4. Discussion

For the GB system, at the transmission level
uncontrolled residential charging of a 100% EV
fleet would result in an 8 GW increase in peak
demand, and an increase in N-1 transmission vi-
olations. At the distribution level 28% of low
voltage distribution networks would require up-
grades. Transformer overloads were twice as likely
as under-voltages. The low voltage networks most
likely to experience problems were those where
private vehicles were the primary mode of com-
muting, vehicle ownership was above average, and
existing electricity demand was high. With a
100% penetration of EVs the worst hit areas were
commuting towns to the west of London, and
cities in the north of England. However, in the
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2030 projected scenario the local penetration of
EVs had a much greater significance than the lo-
cal travel behaviour.

Using smart charging to flatten total load can
significantly reduce this impact. Flattening load
at the transmission level completely mitigates the
increase in peak demand, and flattening at the
distribution reduces the percentage of networks
with constraint violations to 9%. However, flat-
tening load at the residential network level will
not flatten demand at the national level (and vice-
versa), due to the non-flat industrial load that is
connected to the higher voltage network. Flatten-
ing load at the distribution level would result in
a 6 GW increase in national demand, while ex-
clusively flattening load at the transmission level
would mean an 19% of residential networks re-
quiring upgrades, compared with only 9% with
flattening at the distribution level.

Given that voltage violations appear to be
less successfully mitigated than transformer over-
loads, it is likely that DNOs will still need to up-
grade many networks. There are several meth-
ods of reducing the voltage drop along a network
including: changing the transformer impedance,
adding capacitor banks or voltage regulators, re-
conductoring cables, and reconfiguration of the
network. The appropriate intervention will need
to be decided on a case-by-case basis.

It was noted that many residential networks
have oversized transformers, likely due to limited
sizes and /or difficulty in estimating demand. This
enables the additional flexibility in over-specified
networks to be used to flatten load nationally
without increasing constraint violations in resi-
dential networks. It was demonstrated that us-
ing an appropriate smart charging strategy, it is
possible to eliminate the need for new transmis-
sion level generation infrastructure, while simul-
taneously achieving the same performance at the
distribution system level as a strategy that exclu-
sively flattened loads locally.

There are several areas for further work which
could be explored. First, while it has been demon-
strated that it is possible to optimise EV charging
at the generation level without increasing distri-
bution constraint violations, an applicable smart

charging algorithm has not been developed here.
The algorithm deployed in Section 3.3 merely
demonstrated that a solution exists. In order to
be practically applied, such an algorithm would
need to schedule individual vehicle charging with-
out relying on perfect forecasts of vehicle use.
This is challenging because considering both the
local and national problems simultaneously re-
quires a large number of variables.

Second, an increase in distributed renewable
generation has not been considered here. Local
renewable energy generation can reduce the loads
carried by the transmission system, but may cause
local voltage issues in the distribution network.
It is possible that EV smart charging could be
used to offset voltage rise issues. Therefore, the
simultaneous propagation of distribution genera-
tion and electric vehicle charging could be of great
benefit to the system, and needs to be considered.

Third, an assessment of the impact of these
charging regimes on system cost could be com-
pleted. The additional power demand created by
EV charging has the potential to raise costs to
the consumer — given the increase in system losses
and national peak demand. However, the imple-
mentation of smart charging has the potential to
create a more stable and efficient electricity sys-
tem, resulting in a lower costs. HVDC intercon-
nections could play an important role in achieving
low system cost — particularly given the increasing
role of renewable intermittent generation. There-
fore, a cost analysis including an economic dis-
patch model would be an interesting area for fur-
ther work.

5. Conclusions

This paper quantifies the impact that electric
vehicle charging will have on transmission and dis-
tribution systems, and investigates how far smart
charging can be used to reduce the impact on both
systems.

Unlike previous analysis, spatial heterogene-
ity is incorporated into modelling of vehicle use,
electricity demand, and network structure. Ad-
ditionally, the conflict between the constraints of
the transmission and distribution systems is quan-
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tified, and the degree to which both systems can
be protected simultaneously is investigated

The numeric results presented in this paper
are specific to Great Britain’s system. However,
some more general conclusions can be made. It
is likely that vehicle use, electricity demand, and
network structure will vary across a power sys-
tem, and incorporating this variation is important
in understanding how the system will be affected
by electric vehicle charging. There is an inher-
ent conflict between the transmission level and
distribution level system when it comes to smart
charging — it is not possible to flatten load both
in residential networks and nationally. The degree
to which it is possible to protect both systems will
depend on a number of factors, including: the ra-
tio of domestic to industrial load on the system,
the amount of overhead in the existing distribu-
tion transformers, and the shape of the industrial
load profile.
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