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Abstract: This paper proposes a method of coordinating electric vehicle charging to reduce losses in a distribution system,
using only knowledge of the phase that each charger is connected to. Reducing network losses cuts costs and can be achieved
through demand response mechanisms. However, directly minimising losses requires accurate values of the line impedances,
which can be difficult to obtain. Flattening load over time and balancing load across phases have both been proposed as alternate
solutions which indirectly reduce losses. Here, the practical differences between load flattening and explicitly minimising losses are
quantified using simulations of residential charging in European style, 3-phase distribution networks. Then, a new smart charging
strategy, which incorporates phase balancing as a secondary objective to load flattening, is proposed. This requires only the
knowledge of the phase that each load is on and achieves 30-70% of the potential reduction in losses.

Nomenclature

Variables

i Node currents (A)
κ Uniform demand applied to all nodes (kW)
L Total energy lost (Wh)
p Real power injected (W)
q Reactive power injected (VAR)
s Power injections into the nodes (VA)
v Node voltages (V)
x Vehicle load (W)

Parameters

a Linear power flow model bias (V)
E Charging energy requirement (Wh)
h Household load (W)

My Linear power flow model load weights (VW−1)
Nb Total number of buses on the network
Nh Total number of households
Pmax Maximum possible charging power (W)

¯
t Time interval in which the vehicle arrives
t̄ Time interval in which the vehicle departs
T Total number of time intervals
Y Admittance matrix (Ω−1)
α Overall power factor
∆t Size of each time interval (mins)
ηc Charging efficiency
λ Weighting in multi-objective optimisation

Sets

Hx The set of households on phase x

Indicators

εV Relative voltage error

Notation

.(j) Element belonging to vehicle j

.(k) Element at node k
.L Array with the slack bus removed
.0 Array relating to the slack bus
.t Element at time t
.∗ Complex conjugate

Re{x} Real component of x
f() Primary objective function
g() Secondary objective function

1 Introduction

This paper develops a method of charging electric vehicles in distri-
bution networks that reduces resistive losses without requiring a full
model of the network.

Electric vehicles (EVs) are rapidly gaining popularity in high-
income countries, driven by government incentives and falling bat-
tery prices. In the UK, as of Q1 2020 there are 288,000 plug in
electric vehicles on the roads [1], and this number is forecast to rise
to 36 million by 2040 [2]. As at least 50% of vehicles are parked
at home at any time, charging at home offers the most convenience
and flexibility [3]. However, mass charging of EVs at home would
significantly increase loading on distribution systems [4], and appro-
priate action is required to ensure that this will not disrupt system
operation.

Low voltage distribution networks currently account for 29% of
electrical losses in the UK power system [5], and EV charging is
expected to increase this share [6]. Losses not only waste electricity,
but generate heat in the cables and transformer – leading to degrada-
tion of the cables’ insulation [7], and a reduction in the transformer’s
lifespan [8]. Therefore, minimising system losses can reduce both
operating and fixed costs. Loss minimisation in distribution net-
works is a mature research topic; solutions have focused on network
reconfiguration, placement of capacitors, and adding distributed gen-
eration [9, 10]. For example, in [11] they optimise the placement of
new switches in a LV network to minimise losses. However, these
methods incur large costs, and flexibility of EV charging demand
means that losses can instead be reduced by shifting the demand
in time, or smart charging. This method would be preferable for
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network operators due to the large costs associated with network
reinforcements.

Explicitly minimising losses with EV charging is the theoreti-
cally optimal solution for distribution network operators (DNOs).
However, it requires a complete model of the network impedances,
which can be difficult to calculate, and would have to be updated
every time the network is reconfigured. Additionally, the problem
is non-polynomial hard and non-convex, meaning the computation
time of the problem scales poorly with the number of loads and
time resolution [12]. This is largely because the non-linear power
flow equations result in non-convex optimization formulations. Nev-
ertheless, several studies have proposed smart charging algorithms
that minimise losses using the full equations [13–15]. However, the
computational burden necessitates simplifications in the problem set
up; [13] uses a time resolution of 1 hour and treats EVs as homoge-
nous, [14] assumes a flat voltage profile, and [15] only considers
reactive power for reducing losses. Further examples of non-convex
loss minimisation can be found in micro-grid optimal power flow
problems (e.g. [16, 17]); these are also limited to small networks
at coarse time resolutions. At low time resolutions it is not possi-
ble to estimate losses accurately; using a half-hourly time resolution
underestimates the losses by 7% [18]. Therefore, loss minimisation
algorithms which use time resolutions of 1 hour will not necessarily
find the minimum possible loss scenario.

Alternatively, it is possible to formulate approximate loss min-
imisation problems that can be solved in polynomial time. Typically,
these involve simplification of the power flow equations, in order
to remove the quadratic constraint. For example [19, 20] use a DC
approximate power flow in order to minimise losses in a micro-
grid. However, [19] uses an iterative approach, calculating the full
power flow equations in each iteration to reduce error, and [20] uses
locational marginal prices which are calculated based on AC power
flows. This means that neither formulation can be solved in poly-
nomial time, and therefore they scale poorly with the number of
buses and time periods. Local problems that do not require solv-
ing the power flow equations can also be formulated (e.g. [21]) –
although there is no guarantee that the global optima is found. These
approximate methods still require the full network model.

Due to the technical challenges of minimising losses, smart charg-
ing research has focused on other objectives that indirectly reduce
losses. A common approach is to flatten the sum of all of the applied
loads on a network (e.g. [22–24]). Flattening load is often assumed
to be equivalent to minimising losses (e.g. [25]), and distribution
network operators (DNOs) are predominately focusing on shifting
load to off-peak times in order to reduce losses [5]. Flattening load
will minimise peak demand, protecting the transformer (since the
power flow at the transformer depends on the sum of the down-
stream loads), but not necessarily the lines that are distant from
the substation. Losses vary quadratically with current, so higher
peak loads result in larger losses, and in [26] it was found that
flattening EV charging load reduced losses by 20% compared to
uncontrolled charging. However, minimising losses is only strictly
equivalent to flattening load if all loads are drawn from a single
bus on the network [27]. The main advantages of load flattening are
its computational simplicity, and small number of required param-
eters. The problem can be formulated as a convex problem which
can be solved in polynomial time [23], and no information about the
network structure is required.

In 3-phase networks, imbalance between the phases increases
losses, so reducing phase imbalance has also been suggested as
a smart charging objective. Phase imbalance is caused by both
systemic imbalance in the network, and imbalance in the applied
load [28]. While the former can not be easily changed, the latter can
be reduced by shifting demand in time. In the case of 3-phase smart
chargers, load can be shifted in real-time from one phase to another
(e.g. [29, 30]). However, the majority of domestic EV chargers are
connected to a single phase, so it is necessary to co-ordinate the fleet
of vehicles. The resulting problem is non-convex and requires a full
network model (e.g. [31, 32]). However, as the assigned phases of the
households and vehicle loads are fixed, imbalance can be reduced to
an extent heuristically, by taking into account the phase that each
load is on. While imbalance between phases results in additional

losses, the minimum losses do not occur at the minimum phase
imbalance. This is because phase imbalance does not take account
of the size of the load, so well-balanced large loads result in high
losses. For this reason, direct minimisation phase imbalance using
smart charging is not considered in this paper.

To the authors’ knowledge, no existing smart charging formu-
lations reduce losses beyond flattening load without requiring the
full network model. The novel approach presented in this paper
uses the assigned phase of loads to achieve superior performance
with only a small increase in computational complexity. Unlike net-
work impedances, assigned phases are relatively easy for DNOs to
determine, and would only need to be found once.

In this paper, a smart charging method is proposed which incor-
porates phase balancing into the standard load flattening algorithm.
The performance of this scheme, load flattening, and explicit loss
minimising are analysed for a range of networks and loading condi-
tions. This is achieved using a stochastic modelling framework based
on real data and convex formulations for the problems. Given fore-
casts for loads, this method can be used by an aggregator on behalf
of a distribution system operator to optimise EV charging to reduce
losses, either on a day-ahead basis or, using a sliding window, in
real-time.

The contributions of this paper can be summarised as follows:
First, a smart charging method is presented which reduces the losses
in a network beyond that which is achieved by flattening load, with-
out requiring the network impedances. This distinguishes it from
the existing formulations in the literature, which either indirectly
reduce losses by flattening load, or explicitly minimise losses using
the network impedances. Second, the action of the proposed method
is compared to load flattening and loss minimisation in stochastic
simulations. Both the effects of load flattening and loss minimisa-
tion have been previously investigated in residential networks, but
they have not been directly compared using computationally equiv-
alent formulations. The comparison here uses a consistent set of
modelling assumptions and time resolution for all three formula-
tions, and investigates the losses, peak load, and computation time in
each case. Third, a sensitivity analysis is conducted to understand the
dependance of the results on network, season, and EV population.

The results in this paper focuses on European style 3-phase distri-
bution networks and use data specific to the UK. However, the frame-
work is applicable to other styles of network and, with appropriate
data, results could be replicated for other areas. Only uni-directional
charging is considered; further work would be required to adapt the
algorithms for bi-directional charging.

The remainder of this paper is structured as follows. Section
2 details the modelling framework used to construct realistic EV
charging simulations. The convex smart charging algorithms are
described in Sections 3 and 4. Results are presented in Section 5
and Section 6 concludes the paper.

2 Modelling Framework

In order to quantify the effectiveness of the proposed strategy
at reducing losses, simulations representative of residential EV
charging are required. Load at this level of aggregation is highly
stochastic, so it is important to incorporate variability of individ-
ual loads into results. In this section, the modelling framework used
to construct simulations representative of residential EV charging is
detailed.

Monte Carlo simulations are used to capture load stochasticity.
Historic data is used for both the household demand profile and
the EV charging demand. The data are segmented into time peri-
ods consistent with the length of the simulation. For each run of
the simulation, vehicles and household data are randomly added to
the network. Individual loads are selected from a set of scenarios
using a random number generated from a uniform distribution. Once
selected, the load is removed from the distribution to avoid repetition
of loads in a single simulation run.

Here a 100% penetration of EVs is defined to mean that there
is one EV at each household. Note that vehicles are assigned to
households regardless of whether they were used in the period in
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question. This means that some of the vehicles may have zero energy
demand over the simulation time range. The system losses and peak
load are then evaluated for several scenarios: without the EVs, with
uncontrolled charging of EVs, and with each smart charging scheme.
Running this simulation once produces a single deterministic value;
a distribution of values is obtained by repeating the simulation, with
loads randomly chosen and positioned in each simulation instance.

The uncontrolled charging scenario is taken to mean that the
vehicles charge as they were observed to. For the smart charging
scenarios, EVs are required to receive the amount of charge that
they were observed to have demanded, between the time they were
plugged in and the time they were next used. Note that this means
that if a vehicle is unplugged before it is fully charged, then it is con-
sidered to have no flexibility, and the smart charging profile will be
identical to the uncontrolled profile.

Here it is assumed that an aggregator has direct control of the
associated EV chargers, such that they can choose the charging pro-
file that vehicles follow. The availability and energy requirements
of the individual vehicles are respected, however the aggregator can
decide how these requirements will be met. One alternative solution
is that the aggregator provides a price signal to charge points which
then optimise their own charging to minimise cost. The proposed
method focuses on the objective rather than the problem constraints,
so with further work a decentralised version of the methodology
could be developed that uses price signals to control vehicles.

3 Loss minimising algorithm

In this section, the linearisation of the power flow equations
described in [33] is used to formulate loss minimisation as a convex
problem.

3.1 Linear 3-phase power flow

In the case of a three phase, unbalanced distribution network with
wye-connected loads and Nb 3-phase buses, we can write down the
power flow equations as

s = diag(v)i∗ , (1a)

i = Yv , (1b)

where s, i ∈ C3Nb are are vectors of the complex power and current
injections at each bus, Y ∈ C3Nb×3Nb is the network admittance
matrix and v ∈ C3Nb is the vector of bus voltages. The admittance
matrix and voltages can be decomposed as:

Y =

[
Y00 Y0L
Y0L YLL

]
v =

[
v0
vL

]
, (2)

where Y00 ∈ C3×3,v0 ∈ C3 describe the slack bus. The lineari-
sation described in [33] is followed, such that the bus voltages are
approximated as:

v = My

[
p
q

]
+ a , (3)

where p,q contain the real and reactive load injections respectively,
and

My =
[
Y−1

LLdiag(v̄L)−1 −jY−1
LLdiag(v̄L)−1

]
(4a)

a = −Y−1
LLYL0v0 , (4b)

which is calculated around a known power flow solution v̄ (the
linearisation point). Given that there will only be loads placed on
a subset of the buses on the network, we can remove columns
from My which correspond to buses without loads on. This means
that My ∈ C3Nb×2Nh , where Nh is the number of households (or
applied loads) on the network.
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Fig. 1: Relative voltage error εV for three linearisations Ms̄, with
a uniform demand κ assigned to each residential load (with a fixed
power factor). The small error shows the linear models have good
accuracy.

To validate the linear models (prior to optimisation), we consider
a relative voltage error, εV, given by

εV =
||v − v̄||2
||v̄||2

. (5)

Power flow solutions and the admittance matrix are both obtained
using OpenDSS [34]. We study the error εV for three linearisa-
tions: one linearisation M0.3 with all loads at 0.3 kW, then M0.6,
M1.0 likewise at 0.6 kW and 1.0 kW respectively. For each of these
models, a uniform demand κ is applied to all loads, and the error
calculated by comparison to the true power flow solution (see Fig.
1). There is zero error at the linearisation and no-load points, as
expected [33], and less than 0.02% error within ±50% of the lin-
earisation point. Errors in voltage can be mapped (approximately
quadratically) to errors in the final losses model. In Section 5.1 it is
demonstrated that the charging regime can affect the total resistive
losses by more than 30%. Given that this difference is several orders
of magnitude larger than the error, it was concluded that this level of
accuracy is acceptable for the applications in this paper. The mean
load of the smart meter data was approximately 0.6 kW, and so the
model M = M0.6 is used subsequently.

3.2 Real losses model

The complex power injection at a given node k is given by:

s(k) = v(k)i∗(k) = v(k)[Yv]∗(k), (6)

where v(k) is the node voltage, i(k) is the current injection at the
node. The losses can then be written as:

Nb∑
k=1

Re{s(k)} = Re{v>Y∗v∗}. (7)

In order to convert this expression from voltages to applied loads
we need to substitute in (3). In this case, only one type of load is
considered (EV chargers) so it is reasonable to assume a fixed power
factor, meaning the reactive applied load can be expressed as:

q = αp, (8)

where α ∈ R is some constant. If each load had a different power
factor, then α would be a diagonal matrix. Considering:

M =
[
Mp Mq

]
(9)

such that Mp contains the elements multiplied by real loads, and
Mq the imaginary loads. Then substituting in (8), the linear power
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Fig. 2: The power lost when a single 1 kW load is applied to one
node.

flow equation in (3) is reduced to:

M̂p + a (10)

where:

M̂ = Mp + αMq. (11)

Finally, the losses can be expressed as a quadratic function of the
applied real power:

Nb∑
k=1

Re{s(k)} = p>Λp + γ>p + c, (12)

where:

Λ = Re{M̂>Y∗M̂∗}, γ = Re{2a>Y∗M̂∗},

and c = Re{a>Y∗a∗}.
(13)

This model allows the loss sensitivity of each node to be calcu-
lated. Figure 2 shows the estimated power lost when a single 1 kW
load is placed on a given node in the IEEE European LV Network,
and all other nodes are left unloaded. In general, the size of the losses
is proportional to the electrical distance of the node from the substa-
tion. From the figure, it can be seen that the losses are 8 times higher
when the load is at the bottom of the network than when it is at the
top.

3.3 Optimisation problem

Consider a fleet ofN vehicles over T discrete time intervals of dura-
tion ∆t. The charging power of the vehicle at node j during time
interval t is given by x(j)

t . The vector x(j) ∈ RT then represents the
proposed charging profile of that vehicle over the whole time period,
and h(j) is the household’s existing demand profile.

To minimise real power losses due to EV charging, the total
energy lost over T time intervals must be considered:

L = ∆t

T∑
t=1

Nb∑
k=1

Re{s(k)
t }. (14)

By considering p̂ = [p1 . . .pT ]>, the concatenation of the applied
loads at all time instances, we can express:

L = ∆t p̂>Λ̂p̂ + ∆t γ̂>p̂ + cT∆t, (15)

where Λ̂ ∈ RNhT×NhT is a block diagonal matrix of Λ, and γ̂ ∈
RNhT contains T concatenated copies of γ. The real power load, p̂,
can be decomposed into the uncontrollable household load, h, and
the controllable EV load, x. The total losses can then be expressed
as:

L =x>Λ̂x + [(Λ̂ + Λ̂
>

)h + γ̂]>x+

h>Λ̂h + γ̂>h + cT∆t,
(16)

The individual EV energy requirements and limit of the chargers
are encoded in the problem constraints. Every time a vehicle j is

plugged in a new set of constraints are generated, which are defined
by: the time interval in which the vehicle arrives, t, the time it is
needed by, t̄, and the energy it requires, E(j). Mathematically these
constraints can be described as:

ηc

t̄∑
t=t

x
(j)
t ∆t = E(j), (17a)

0 ≤ x(j)
t ≤Pmax ∀t ∈ [ t , t̄ ], (17b)

where ηc is the charging efficiency, such that (17a) ensures that
the vehicle has received the right amount of energy before it is
required, and (17b) limits the charging power at every time to be
non-negative and below a maximum value. Finally, the optimisation
can be described as:

minimise
x

(16) subject to (17).

which takes the form of a quadratic program (QP). This is con-
vex providing the matrix of the quadratic component is positive
definite[35], and can be solved using standard software packages,
such as cvxopt[36].

4 Proposed algorithm

In this section, the proposed smart charging methodology is
explained. First the standard load flattening optimisation problem
is described. Then, incorporating phase balancing as a secondary
objective is proposed.

4.1 Basic load flattening formulation

Flattening the load on a network is equivalent to minimising the 2-
norm of the total demand. The 2-norm is given by the absolute square
sum of the components at each time. Therefore, taking the same vari-
ables as in Section 3.3, the load flattening objective can be described
as:

f(x) = ||
Nh∑
j=1

(h + x)(j) ||22 . (18)

The individual constraints are unchanged, as they describe the
charger and vehicle requirements, so the final problem is:

minimise
x

(18) subject to (17),

which also takes the form of a QP.

4.2 Phase Balancing for Loss Reduction

The load flattening problem is ill-posed, as a unique solution does
not exist. This is because all vehicles are treated as homogenous,
meaning that charging can be shifted from one vehicle to another
without affecting the objective function. It follows that there are a set
of solutions which flatten load optimally, and the solver will just pick
the one closest to its starting point – typically solvers initialise all
variables as equal, so the resulting profiles tend to be slow and flat.
Tikhonov regularization is a method of creating a unique solution
that is preferable in some way. A second function is added to the
objective, weighted by a very small number λ, such that the function
only becomes significant once the initial optima has been found.

In this case, it is desirable to select a load flattening solution which
results in lower losses. Phase imbalance is one cause of losses, and
can be quantified using the ratio |I2|/|I1| [37], where I0,1,2 are the
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zero, positive, and negative sequence currents. These are calculated
by: I0I1

I2

 =
1

3

 1 1 1

1 a a2

1 a2 a

IAIB
IC

 , (19)

where a = ej
2π
3 , and IA,B,C are the currents in phases A,B and

C [38]. Minimising this ratio across the network is a non-convex
problem and requires the full network model to be known. However,
the branch currents are driven by the applied loads, so it follows
that the average phase imbalance in the network could be reduced
by balancing the applied load across the phases. It is not normally
possible to alter the phase that a household or vehicle is drawing
power from, since households are often connected to a single phase.
However, it is possible to co-ordinate the individual charging of the
electric vehicles relative to one another, so that the total load on the
network is relatively balanced. Therefore, here the following convex
objective is considered:

g(x) = ||
∑

j∈HA

(h + x)(j) −
∑

j∈HB

(h + x)(j) ||22+

||
∑

j∈HA

(h + x)(j) −
∑

j∈HC

(h + x)(j) ||22+

||
∑

j∈HB

(h + x)(j) −
∑

j∈HC

(h + x)(j) ||22 ,

(20)

where the setHi contains the households in the networks on phase i,
such that each household belongs to exactly one set. While calculat-
ing losses requires all of the network impedance to be known, g(x)
requires only each load’s phase. This is easier for DNOs to deter-
mine, and would likely only need to be found once (unlike network
topology, which regularly changes as a result of network reconfigu-
ration). It is shown in Section 5 that incorporating this function as
a secondary objective to the load flattening problem has the effect
of reducing |I2|/|I1| across the network. The proposed optimisation
can be described as:

minimise
x

f(x) + λ g(x) subject to (17)

where λ� 1, such that the function g only becomes significant in
the optimisation search gradients once the minima of f has been
reached. The resulting problem remains a QP.

5 Results & Discussion

In this section the results of the proposed smart charging objectives
in realistic simulations are compared. First, the data sources used to
formulate the simulations are described. Then, a detailed analysis
of the proposed method, load flattening, and loss minimising on the
IEEE European Low Voltage Test Feeder is presented. Finally, a sen-
sitivity analysis is conducted, testing the dependance of the results
to season, EV population, and network structure.

5.1 Data sources

Realistic charging simulations require data sources for both house-
hold electricity and EV charging demand. Here 1 minute resolution
smart meter data from a UK trial were used for load profiles [39].
These were from 280 households in the North of England, which
were monitored from November 2012 to July 2014. A single day
from the dataset was chosen for a single simulation, so that the likely
correlation between households’ loads is captured. A dependancy
on season and weather means that demand of nearby households on
the same day are likely to be highly correlated. If this correlation
is not taken into account the peak demand on the network may be
underestimated.

For EV charging demand, we use data from a UK trial which mon-
itored the charging of 224 Nissan Leafs [40]. Charging start and end
times were recorded to the nearest minute, and the starting and final
charge of the vehicle to the nearest 2 kWh. Each charging event was
translated into a set of constraints (17a) and (17b), where E(j) is the
total amount of energy the vehicle uses, t is the time that the vehicle
arrives and is plugged in and t̄ is the time that the vehicle departs. If
arrival and departure times are uncertain, a sliding window could be
incorporated to adjust for errors in forecasting.

For each vehicle, up to 18 months of data are recorded, but in
this paper a reduced time range of 9 months is considered, where
the overlap between vehicles’ recording periods was largest. Unfor-
tunately, it was not possible to select the same day or location for
both as the household and EV trials did not overlap. The extent to
which vehicle use and electricity demand are related is uncertain,
however this may result in the peak loading on the network being
underestimated.

The losses resulting from additional load will be dependant on the
distribution network characteristics. In the UK, distribution networks
are typically 3-phase, and a mix of radial and meshed styles. In this
paper, a selection of the 3-phase test feeders from [41] are used,
which are based on real networks in the UK. The first of these is the
55 household IEEE European Low Voltage Test Feeder, which was
used for the bulk of the analysis. However, to gain some perspective
on the variation between networks, 8 other systems were chosen. All
test systems considered were 3-phase and operated at a frequency of
50 Hz with a base voltage of 230 V, consistent with the UK power
network.

5.2 IEEE European Low Voltage Test Feeder

Monte Carlo simulations were constructed on the IEEE Euro-
pean Low Voltage Test Feeder using the methodology described in
Section 2. Five scenarios were considered:

• No EVs – only the household loads were included.
• Uncontrolled charging – EVs charge as observed.
• Loss minimising – EVs charge according to Section 3.
• Load flattening – EVs charge according to Section 4.1.
• Load flattening with phase balancing – EVs charge according to
Section 4.2.

All optimisation problems were formulated at 1 minute resolution,
with a maximum vehicle charging power of 3.5 kW – which is the
rated power of typical domestic charging points in the UK. The
total load profiles resulting from the scenarios are shown in Fig. 3.
Note that load flattening with phase balancing is not included, as the
load profile is identical to load flattening. On average, uncontrolled
charging of EVs doubled the existing peak demand and significantly
increased the variability in demand. Flattening load mitigated the
increase in peak demand, while minimising losses resulted in a 20%
increase. Whether or not this is acceptable will depend on the rating
of the distribution transformer.

The losses experienced in each scenario are shown in Fig. 4,
where the blue lines show the median values, the boxes cover 50%
of the values, and the whiskers show the range. The addition of the
EV charging significantly increased the network losses, regardless
of charging scheme; however all smart charging strategies reduced
losses compared to the uncontrolled charging case. As expected,
the losses were lowest when they were explicitly minimised. Losses
that occur in the other smart charging scenarios, but not in explicit
loss minimisation, could in theory be avoided. The effectiveness of
load flattening and the proposed load flattening with phase balanc-
ing strategies can be compared using the amount of theoretically
avoidable losses that are realised. The addition of phase balancing
reduced avoidable losses by an average of 54% compared to the load
flattening case. This means that the addition of the secondary objec-
tive achieves more than half the benefit that explicitly minimising
losses would provide, without requiring the network topology and
impedance information.
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Fig. 3: The total load on the 55 bus network, without EV charging
and under three different charging scenarios. The solid lines show
the median load over the simulations and the shaded area covers the
90% confidence interval.
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Fig. 4: The energy losses per household experienced under the
five scenarios. The blue line shows the median, the box covers the
interquartile range, and the whiskers cover the total range. The dotted
line aids comparison against the loss minimising median.

Figure 5 shows the average phase imbalance throughout the simu-
lation in all 3-phase lines, for each EV charging scenario. The values
are capped at 10% and 50%, and the coloured markers show the
phase that each household is on. Under all scenarios the phase imbal-
ance is worse further down the network, which is unsurprising as the
systemic imbalance will be greater at this level of aggregation. All
the smart charging schemes exacerbated the imbalance at the bot-
tom of the network compared to uncontrolled charging, potentially
because in the uncontrolled case the EVs broadly follow similar
charging profiles (predominantly overnight). This demonstrates the
fact that phase imbalance does not take account of the size of the
load, so would not necessarily reduce losses if used as the primary
objective. The load flattening with phase balancing has the small-
est phase imbalance at the top of the network. This is unsurprising,
as (20) considers the imbalance of all of loads summed – which is
analogous to the load at this point in the network.

Loss minimising results in a worse phase imbalance at the top
of the network compared to load flattening with phase balancing.
This, perhaps surprising, result reiterates the point that phase imbal-
ance alone can not be used as a measure of losses. However, more
clarity can be gained by visualising the location of the losses in the
network for these two schemes. Figure 6 shows the difference in
average losses per meter over the day between phase balancing and
loss minimising, for each line in the network. At the top of the net-
work, where the load is flatter and better balanced, the losses are
lower in the phase balancing case, while further down the network
the losses are lower in the loss minimising case. Therefore, while
the losses are largest at the top of the network, the total losses are
minimised by flattening the load elsewhere in the network.

While all of the smart charging formulations are quadratic pro-
grams, and therefore can be solved in polynomial time by standard
solvers. The computation time will vary according to the sparsity of

Phase A
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- 55%
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- 35%

- 25%

- 15%

LF+Phase Balancing

Uncontrolled

Load Flatttening

Loss Minimising

Fig. 5: The test network under each EV charging regime, where the
line colours show the average phase imbalance. Single phase lines
are grey.
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Fig. 6: The average losses per length in each branch of the net-
work under load flattening + phase balancing when compared to loss
minimising.

Load Load Flattening + Approx Loss Full Loss
Flattening Phase Balancing Minimisation Minimisation

6.0s 12.3s 8.7s X

Table 1 The average simulation time for the smart charging solution to be
calculated for 1 day of charging at 1 min resolution on the IEEE European Low
Voltage Test Feeder.

the quadratic matrix. The average calculation time for each smart
charging solution is shown in Table 1. All optimisation strategies
were carried out using cvxopt in Python on a 2.3 GHz Intel Core
i5 with 8 GB of memory. The load flattening with phase balancing
strategy has a higher computational complexity, due to the quadratic
matrix in the objective having a larger number of off-diagonal terms.
However, the main benefit of the proposed algorithm over approxi-
mation loss minimisation is not requiring the network impedances.
If accurate impedance information is available it may be more ben-
eficial to use the loss minimisation strategy. It is worth noting that
the loss minimisation results are all using the approximation loss
minimising algorithm from Section 4.1 – full loss minimisation is
non-convex, and therefore at this time resolutional is not tractable
on this simulation platform.
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Fig. 7: The reduction in losses, per household with an EV, achieved
by minimising losses rather than flattening load, against EV pene-
tration. The solid line is the median, and the shaded area covers the
inter-quartile range.
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Fig. 8: The reduction in losses per household achieved by each
scheme compared to flattening load, for various seasons. The thick
lines shows the medians, the box covers 50% of the values, and the
lines the total range.

5.3 Sensitivity Analysis

This section investigates the dependance of the results from Section
5.1 to various modelling parameters.

5.3.1 Sensitivity to EV Population: Thus far, it has been
assumed that there is one EV at each household. However, smart
charging is likely to be implemented before this penetration level
is reached. It is therefore important to consider how the difference
between these algorithms changes with lower levels of penetra-
tion. Figure 7 shows the additional loss reduction achieved by the
more advanced smart charging algorithms when compared with load
flattening. This is the difference between the losses in the smart
charging scenarios compared to load flattening – note that the total
losses increase quadratically with the total load on the system. The
solid lines show the median value, and the shaded area covers the
interquartile range. It can be seen that, regardless of penetration
level, phase balancing achieves an average of 50% of the possible
reduction in losses, and that there is an approximately linear relation-
ship between EV population and loss reduction. This means that with
fewer EVs on a network, the additional benefit of minimising losses
is lower than that shown in Section 5.2. In other words, when the
penetration of EVs is very low it may not be worth doing anything
more advanced than flattening load. However, as the EV popula-
tion increases, so do the potential loss reductions from incorporating
phase balancing.

5.3.2 Sensitivity to Season: In the UK, heating and lighting
contribute significantly to household electricity demand. Throughout
the year there is a 12.7oC change in average temperature and an 8.8
hours change in daylight length. This means that the shape and size
of household demand varies significantly with the time of year. To
quantify the effect this has on the difference between the algorithms
the simulation was repeated using load and vehicle data from differ-
ent times of year. Figure 8 shows the additional reduction in losses
achieved by the more advanced smart charging schemes, compared
with load flattening for each of the seasons. There was minimal dif-
ference in the results, although slightly larger values were observed
in the winter simulation (where the feeder was the most heavily
loaded).

5.3.3 Sensitivity to Network Structure: Thus far, the results
have focused on the IEEE European Low Voltage Test Feeder. How-
ever, network topology and the phase distribution of loads have a
large effect on the losses in a distribution network. Therefore, the

Losses (Wh per household)
# Loads No EVs Uncontr. LM LF LF+PB
1 24 40 133 102 114 110
2 67 57 199 160 172 166
3 73 106 378 308 329 323
4 55 111 385 306 332 318
5 94 138 479 392 416 404
6 175 164 576 475 500 490
7 65 179 632 515 548 532
8 186 384 1344 1153 1171 1157
9 115 481 1664 1379 1442 1396

Table 2 The daily losses in each of the networks considered.

simulation described in Section 5.2 is repeated for 8 other feed-
ers from [41]. The full results are displayed in Table 2. Figure 9
shows the additional loss reduction and associated increase in peak
demand for the two algorithms, compared with flattening load, for
each network. As expected, load flattening with phase balancing
does not increase peak demand compared with load flattening. The
networks are ordered by their losses per household before EV charg-
ing is added, and the number of households on the network is shown
in brackets. Network 4 is the IEEE European Low Voltage Test
Feeder; a mapping of the feeders to those in [41] is presented in
the Appendix.
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Fig. 9: The additional reduction in losses and associated increase
in peak demand for each of the test networks. Both loss minimising
and load flattening with phase balancing are shown, compared to the
load flattening scenario.

For all of the feeders considered, flattening load resulted in a
significant amount of avoidable losses. In general, this was larger
for lossier feeders. For most of the feeders, the reduction in losses
came at the expense of around a 0.2 kW increase in peak 30
minute demand per household. On average, balancing phase reduced
between 30 and 70% of the avoidable losses, without an increase in
peak demand.

5.4 Reward Allocation

There are two direct benefactors from reduced losses; the distri-
bution network operators (DNOs) and the energy suppliers. DNOs
benefit due to lower line loadings, and peak loads passing through
the transformer. Reducing losses can defer required network rein-
forcements. Suppliers benefit because losses that are “in front of
the meter” are not assigned to any particularly consumer, and are
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therefore paid for by the supplier. However, in both cases these costs
are inevitably passed on to consumers, so all bill-payers will indi-
rectly benefit from reduced losses. The owners of the participating
vehicles should also be directly remunerated by the aggregator in a
manner proportionate to the value which they provided by delaying
their charging. However, the exact allocation algorithm is outside the
scope of this paper.

6 Conclusion

This paper proposed a method of charging electric vehicles in dis-
tribution networks which reduces resistive losses without requiring
a full model of the network. By explicitly minimising losses rather
than flattening load with a 100% EV penetration in the IEEE Euro-
pean Low Voltage Test Feeder, an additional 1W per household
could be saved – although this came at the expense of a 0.2 kW
per household increase in peak demand. The reduction in losses
is due to two components: (1) prioritising load flattening on high
impedance lines and (2) load balancing between phases. Based on
this observation, a new smart charging strategy was proposed, which
incorporates phase balancing as a secondary objective to load flat-
tening. The proposed scheme achieved between 30–70% of this
reduction in losses, without an increase in peak demand.

The additional benefit of loss minimising was found to be approx-
imately linear with the number of EVs charging on the feeder, and
did not vary significantly seasonally. The biggest sensitivity of the
result was to the network structure; 9 feeders were considered and
the average daily savings per household ranged 15 Wh to 70 Wh.
The savings were approximately proportional to the losses in the
network before EV charging was added. The fraction of losses saved
was shown to have no significant relation to the number households
on the network.

Further research will be required before the algorithms proposed
in this work could be implemented in practice. First, a decentralised
approximation of the proposed methodology may need to be devel-
oped. This would allow for random EV arrivals, and negates the
data privacy concern from users having to transmit their availability.
Secondly, if a decentralised scheme were developed, more complex
modelling of the battery dynamics would be possible, due to the
reduced complexity of optimising a single vehicle. Finally, further
validation of the results could be performed once data become avail-
able from future trials which collect both EV and smart meter data
from households.

Appendix

Description of the feeders utilised in the results section

The table below maps the feeders used in this analysis in Section
5.3.3 to those in [41].

# 1 2 3 4 5 6 7 8 9

Network 4 21 16 1 3 2 19 7 2
Feeder 1 3 2 1 1 1 3 4 4
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