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Abstract—A target has been set to have 100% carbon pollution-
free electricity by the year 2035 in the US, requiring an increased
reliance on renewable sources. However, as renewable energy
sources become more integrated into power systems it causes a
fluctuation in power supply. Batteries are typically used to deal
with fluctuations but are unsuitable for longer timescales due to
the associated costs. As of now, electric freight transportation
is in the early stage of deployment. This paper presents a
solution to help mitigate the challenge associated with renewables
and reduce the variation in supply by leveraging the flexibility
of supply chains and integrating electrified supply chains into
power systems planning and operation. We demonstrate that
(unlike batteries) supply chain flexibility can increase utilization
of renewables, for incentives as low as $0.01 per MWh.

I. INTRODUCTION

To meet the US renewable policy goal to have 100% zero-
carbon electricity by 2035 will require a significant increase in
renewable energy generation [1]. However, a major drawback
of renewables is the fluctuation in the power supply, leading
to challenges balancing the demand and supply for power [2].
Renewables, such as solar and wind power, are dependent
on weather leading to them being stochastic in nature. It is
also important to note that, although variation in power supply
becomes smaller at lower time resolutions, it is still significant
for longer periods such as a week.

Often batteries are used to smooth the fluctuations in re-
newable production and help minimize the difference between
demand and supply of electricity [3]. However, batteries are
not cost-competitive for storing energy for long periods of
time. A breakdown of the cost of implementing a battery
energy storage system can be seen in [4]. Batteries are useful
for shorter time frames such as a day, but are not suitable for
time frames greater than a month. A variety of energy storage
technologies have been developed, and [5] shows a breakdown
of their uses and effectiveness in dealing with the fluctuations
of renewable energy – including discussing the importance of
lowering the cost for energy storage technologies to increase
the renewable energy utilization.

To deal with the fluctuations of renewable energy over
longer time frames, cross-seasonal load shifts from industrial
sectors has been analyzed. Cross-seasonal load shift aims to
shift the production of goods to a season where electricity
prices are lower, which is typically also where there is a larger
production of renewable energy. In the case of solar power, it

typically has a larger production from May to September in the
Northern Hemisphere. However, cross-seasonal load shift only
works for specific industry sectors that can shift production
without major disruptions and additional costs [6].

Moreover, there is a significant body of research on the
issues and solutions of integrating renewable energy into the
grid, such as [7], which explores possible solutions such as
storage devices and transmission grid expansion. Meanwhile,
[8] addresses some solutions based on new technology that
can be implemented and offloading power usage to lower peak
times. It also highlights the high cost of using batteries to deal
with fluctuations, particularly battery energy storage systems
(BESS).

The paper will investigate an alternate solution to deal
with the fluctuation in renewable resources, by leveraging the
flexibility of future supply chains involving electrified freight
transportation. There has been and will continue to be, an
interest in electrifying freight transportation to minimize the
emissions [9]. Studies have been conducted related to electric
vehicles and their economic and environmental impact when
used as a source of distributed energy storage, that can store
and release energy whenever required by the grid [10].

In some cases, balancing of renewables can be achieved with
smart charging, also known as delaying charging [11]. In smart
charging, the charging of electric vehicles is delayed while not
affecting the use of the vehicle, potentially shifting electricity
demand to times with more renewables available. Past research
has explored the impact of smart charging which can lead to an
increase in energy for transportation coming from renewables,
and allows for better utilization of renewable energy [12]. As
an extension, electric vehicles can be used as a source of
energy through a technology known as Vehicle-to-Grid (V2G).
In V2G, the charger can discharge the battery of an electric
vehicle into the grid by remaining plugged in even after it
has finished charging. The impact of V2G technology has
been analyzed and, in combination with smart charging, it can
enable systems to integrate larger amounts of renewable energy
[13]. Various works have shown that V2G and smart charging
can: minimize system load, increase renewable utilization,
and balance the supply and demand of power [14]–[18].
Most studies focus on charging residential vehicles (e.g. [11]),
however, these are only suitable for shifting demand over short
timescales (hours) due to consumers’ driving demands.
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Typically, supply chain optimization problems aim to meet
the demand for goods while minimizing the overall cost of
the system. In supply chain optimization, vehicles are routed
based on the paths that minimize the distance traveled. Trying
to determine the most optimal routes that a fleet should take
to deliver goods to customers has led to the development
of countless vehicle routing problem models. A review of
the vehicle routing problem is explained by [19]. Research
has also been conducted on the integration of production
scheduling and vehicle routing, and the necessary requirements
[20]. A breakdown of a formulation for the vehicle routing
problem is shown in [21] which incorporates complexities
found in real life and possible ways to solve the problem.

In this paper, we develop a coupled formulation for joint
power system and supply chain planning. The power system
encompasses the supply and demand of power, which includes
both non-renewables and renewables. Supply chain planning
involves the distribution of goods to balance the seasonal
supply of goods with fluctuations in demand. This differs
from past research by presenting a new formulation for the
joined power system, integrating the supply chain planning
and power system, which usually function independently and
are modeled separately. A seven-city case study is explored to
demonstrate the effects of our proposed model. Additionally,
an economic comparison is made between our proposed model
and a battery-operated system.

It is important to note, that the flexibility of the supply
chains being leveraged in this formulation comes from the
timeline of supply chains, which can span months from the
raw material to the delivery of finished goods, and typically
in a supply chain most links are not working at full capacity.

II. PROBLEM FORMULATION

To model the coupling of the supply chain and power
system, we develop a formulation that finds the lowest overall
system cost. Our problem objective is to minimize the total
capital and operation cost of the coupled system, which can
be described as:

min ∆tNt

(∑
i

kstore
i Wi + ktruckY

)
+ kpower

∑
t

zt +
∑
t

∑
i

10−3p
(t)
i

(1)

To calculate the total cost of storing goods across time and
all locations, the following variables are needed: ∆t, the size
of each time step in hours; Nt, the number of time steps; kstore

i ,
the levelized cost of warehouse storage at a given location i
in $/kg-hour, which changes depending on the location being
more expensive in a bigger city and cheaper further out; ktruck,
the levelized cost of each truck in $/hour; Wi, the maximum
capacity of the storage facility at location i in kg; and Y ,
the total number of trucks in the fleet. To determine the use of
non-renewables and incentivize efficient energy usage a power
penalty, kpower, is included in $/KWh, and the number of non-
renewables available at each time, zt, in kWh. Note that in

this paper, the power balance model we will be using will be
a copper plate model. This means that we are not going to
consider the distribution of power and focus on balancing the
supply and demand of power. In the objective, we also include
the total consumed electricity for each location and time in
kWh, p(t)i . In the objective function, 10−3 is a weighting factor
to create a secondary objective by reducing the effect of the
total consumed electricity. This small weighting disincentives
solutions that waste renewable power, which could be used by
other demand sectors.

The constraints of the coupled optimization problem can be
expressed as:

Y
(t)
i = Y

(t−1)
i −

∑
j

y
(t)
(i,j) +

∑
j

y
(t−τij)

(j,i)

−
∑
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y′(i,j)
(t) +

∑
j

y′(j,i)
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(2a)
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 (2b)
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∑
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τij∑
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(i,j) ≤ Y (2d)

C
(t)
i ≤ Y

(t)
i Tbatt (2e)∑

i

p
(t)
i ≤

∑
i

r
(t)
i + z(t) (2f)

X
(t)
i ≤ Wi (2g)

Note that all constraints are for all location i and time t where
t < τi,j .

For simplification, only full trucks and empty trucks are
taken into consideration in the formulation to avoid non-linear
constraints which would significantly increase computational
complexity. To determine the number of stationary trucks in
the system at any location and time, constraint (2a) is used.
Here, Y (t)

i represents the number of trucks at location i and
time t. The term y

(t)
(i,j) is the number of trucks that leave

location i to location j, and y′(i,j)
(t) are the number of empty

trucks that leave location i to location j. The parameter τij
represents the fixed number of time steps required for trucks to
travel from location i to location j. This constraint calculates
the number of stationary trucks at location i and time t by
considering the number of stationary trucks in the preceding
time step, the number of outgoing loaded and empty trucks
leaving location i at time t, and the number of incoming loaded
and empty trucks.

Constraint (2b) keeps track of the product in the system and
how much of it is stored at a specific location and time t. To
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calculate the amount of product stored at location i at time t,
X

(t)
i , we need to consider the amount of product at the same

location in the previous time step, X
(t−1)
i , and the product

injection in kg at location i and time t, s(t)i , where a positive
amount indicates an extra supply of the good and a negative
amount indicates demand for the good. Moreover, we need to
consider the number of products leaving location i at time t
by considering the number of full trucks leaving location i to
any location j at time t and the total capacity in kg of each
truck, Tload. Similarly, we need to take into account the total
number of full trucks arriving at location i in time t from any
location j after a time delay or the time it takes a truck to
travel from a specific location j to location i. Through this
constraint, the demand of each location is met, satisfying the
major goal of a transportation system.

To keep track of the accumulated charge of trucks at each
location i we have constraint (2c). In this constraint, the
accumulated charge of the current time t, C(t)

i is calculated
based on the accumulated charge of the previous time, C(t−1)

i ,
the energy accumulated from grid charging, p(t)i and the energy
lost from the full and empty trucks leaving current location i.
To calculate the energy lost we have the amount of energy in
kW needed for a full truck to go from location i to location j,
E(i,j), by the number of full trucks leaving the current location
i to any location j. For empty trucks, we assume that the
energy required by the truck changes linearly with the weight
of the truck and is thus proportional to the weight ratio of
the truck. Thus, the ratio is composed ratio of the weight of
a truck Tw in kg over the combined weight of the truck and
the carrying load capacity of the truck, Tload, in kg. Reminder
that ∆t is the size of each time step in hours.

Furthermore, constraint (2d) ensures that the total number of
stationary trucks at location i and time t, Y t

i , plus the number
of trucks traveling in the system must be less than the total
number of trucks in the fleet, Y . The total number of stationary
trucks at location i and time t is calculated by summing for all
the locations the number of trucks at each location i and time
t. Meanwhile, the number of trucks traveling in the system is
calculated by summing over all the trucks going from location
j to location i, taking into account the time delay.

Constraint (2e), makes sure that the accumulative charge at
location i for a time t, C(t

i , is less than the battery capacity of
a truck Tbatt in kWh multiplied by the number of stationary
trucks at location i for time t, Y (t)

i .
To ensure that the amount of power being used in kW,

p
(t)
i , is less than the total amount of renewables available,

r
(t)
i in kW, and non-renewables available in kW, z(t), we have

constraint (2f). Note that, since the model is a copper plate,
the non-renewable power available is only considered to vary
across time, not by location. If we included a complete power
network model, we would substitute the following constraint
with a set of power flow equations.

The final constraint (2g) ensures that the amount of product
at any location i and time t is less than the maximum capacity
of the storage facility at location i, Wi.

All the decision variables must be greater than or equal to
0 so we have that:

y
(t)
ij , z

(t)
i , X

(t)
i ,W

(t)
i , Ŷ , C

(t)
i ≥ 0 (3)

Although the formulation presented uses integer variables
for the number of trucks traveling along each path, we relax
these variables to be continuous. This allows us to keep
the computational burden of the (very large) problem down,
although necessitates implementing a rounding policy.

A. BESS Comparison

To see the effectiveness of using the proposed model an
alternative model, the battery energy storage system (BESS),
and its formulation are presented. In the proposed model,
we have a power penalty for non-renewables and trucks
acting as mobile batteries to help minimize fluctuations of
renewables while still covering demand. Trucks are moved
to meet demand and minimize the power penalty for non-
renewables.

In our BESS comparison, the decisions for truck schedules
are all fixed using the cost minimum solution assuming no
penalty is applied to non-renewable power. Then our formu-
lated problem considers whether it is economically viable to
install fixed batteries to deal with fluctuations in renewables,
motivated by the penalty on non-renewable power. Batteries
have a high capital cost but, unlike electric trucks, they do
not have an underlying energy demand that must be met. This
comparison allows us to benchmark the cost of using supply
chain flexibility against stationary energy storage.

To model the BESS we develop an objective that minimizes
the total cost of batteries and power penalty for non-renewable
energy characterized by:

min kbattMbatt + cpower
∑
t

zt (4)

In the BESS model, we assume the electric trucks are
charged at a minimum cost, as a result fixing the power
demand. To calculate the total cost of the batteries, we take the
levelized cost of each battery in $/kWh, kbatt, multiplied by
the maximum capacity of the installed battery, Mbatt in kWh.
Additionally, the penalty-cost, kpower, for the non-renewable
energy being used, zt, is considered.

The constraints for the BESS model are as follows:

Bt = Bt−1 − pt + rt + zt − rcurtt ∀t (5a)
Bt ≤ Mbatt ∀t (5b)
B0 = BNt (5c)

For constraint (5a), the battery stored energy at a time in
kW, Bt, is based on the battery stored energy at the previous
time step in kW Bt−1, the energy demand at time t, pt, the
renewable energy generation at time t in kW, rt, the non-
renewables used at time t in kW, zt, and the curtailed energy
at time t in kW, rcurtt .
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To make sure that the battery energy storage. Bt, is less
than the maximum battery capacity, Mbatt we use constraint
(5b).

Finally, to make sure that the battery storage energy at
the last period BNt , where Nt is the number of time steps,
equals the battery storage energy at the first period B0 we
have constraint (5c).

All the decision variables must be non-negative leading to:

Mbatt, Bt, r
curt
t , zt ≥ 0 . (6)

III. RESULTS

To determine the impact of the formulation, a case study was
conducted which included 7 cities in the network: Atlanta, GA;
Knoxville, TN; Nashville, TN; Birmingham, AL; Savannah,
GA; Chattanooga, GA; and Charlotte, NC. There was a
product supply injection in Savannah, GA amounting to 8,000
metric tons that needed to be distributed across the network –
with each city in the network having a deterministic time-
varying demand for product in kilograms. The case study
extended across a 2-month planning horizon and contained
hourly time steps. In this case study, we used Gurobi, the
optimization solver in Python, which was run on a Dell XPS
16 Laptop.

A. Changes to fleet operation

Figure 1 visualizes the change to the supply chain network
when a $10/MWh penalty on non-renewable power is in-
cluded. This resulted in an increase of 31.3 MWh of renewable
generation utilization when compared to the solution with no
penalty on non-renewable power.

Fig. 1. A visualization of how the movement of goods changed over the two-
month simulation with the introduction of a penalty on non-renewable power.
It shows the 7 cities of the case study with the line thickness showing the
number of trips, the text next to the lines showing the change in the number of
trips, the pink circles showing the size of the warehouse capacity, and the text
near the circles showing the change in warehouse capacity in kg of product.

The results of the case study showed that the introduction
of the power penalty altered supply chain operation, with

most cities experiencing increases in warehouse capacity,
thereby optimizing the storage of the system. Nashville was an
exception containing a slightly decreased warehouse capacity.
Specifically, the largest change exhibited was Knoxville with
an increase of 354 kg of product in warehouse capacity.
The larger warehouse allows the facility to store goods for
a longer period, increasing the supply chain’s flexibility. The
large increase in warehouse capacity is most likely due to
the position of Knoxville on the map with its proximity to
Nashville motivating the network to store goods in a city with
closer proximity to more cities in this case Nashville. Another
reason is due to how the demand is distributed across the
network. In our model, Knoxville contains a large demand
for goods which removes a large quantity of goods from the
warehouse in the area.

There was also a decrease in the number of trips between
certain cities, with the greatest reduction being between Sa-
vannah and Charlotte, at 11 trips. Reduction in the number
of trips corresponds to less time on the road for trucks since
they will no longer have as many miles to cover, thus reducing
emissions and lowering operational costs. Moreover, it allows
trucks to spend more time at facilities than the road allowing
them more time to act as mobile batteries to deal with fluc-
tuations in power supply from renewables. Conversely, there
was an increase in the number of trips between other cities
with the largest increase being Knoxville to Chattanooga at 11
trips. Since, the considered case study showed no changes in
the total number of trucks in the fleet when using the proposed
model, it implies that the increase in a number of trips between
some cities is based on the goods taking a slightly different
trip from the origin to destination, aligning it better with the
generation of renewables.

B. Comparison with battery energy storage

To assess the economic effectiveness of the proposed model,
a comparison was conducted between utilizing supply chain
flexibility and BESS. As mentioned before, the proposed
model takes into consideration a power penalty for non-
renewable energy and utilizes electric freight to motivate the
use of renewables. Meanwhile, in BESS, batteries are imple-
mented in the system if it is economical to provide balancing
services to the power system and increase the utilization of
renewables.

To check the effect that changing the incentive for renewable
energy in $/MWh had on the proposed model and the BESS
model, we examined how the amount of renewables used in
MWh changes as the incentive increases. For the proposed
model, as the incentive grew, the amount of renewable energy
used increased. For the incentives of 0.01, 0.1, 1, 10, and 100
$/MWh, the increase in renewable energy used across the two-
month horizon was 27.6, 28.5, 31.3, 37.1, and 99.8 MWh,
respectively. Meanwhile, when the incentive was smaller at
0.01 and 0.1 $/MWh, BESS did not use any renewable energy,
most likely due to the high cost of batteries. However, as the
incentive grew, BESS began to use up more renewable energy
with at the incentive of 1, 10, and 100 $/MWh, the renewable
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energy used was 31.3, 108.6, and 134.8 MWh respectively.
The comparison can be seen in Table I.

These results demonstrate that for an incentive lower than
1 $/MWh our proposed model increases the use of renewable
energy compared to the BESS model and thus is better at
integrating renewables with little incentive. The BESS model
does not shift towards renewables until the incentive is larger
than 1 $/MWh, meaning it needs a larger incentive to outweigh
the batteries’ cost. BESS requires batteries to deal with the
functions of the power supply. Since the objective of the
model is to minimize cost, the BESS model does not find
it economical to utilize renewables until it has an incentive
high enough to balance the cost of the batteries and make
integrating batteries into the system worthwhile. Once the
incentive is large enough to add batteries, the renewable energy
used increases more rapidly for BESS than for the proposed
model. Considering that once a battery is put into place and
we have the initial capital investment it can allow renewable
energy to be used at no additional cost until further batteries
are needed, in other words, until the capacity of the batteries
is met. However, this will lead to significant expenses due
to the cost of the batteries when we want to integrate higher
amounts of renewables into the system for longer. Thus, the
proposed method is better for allowing the system to use
renewable energy more effectively with fewer incentives and
more consistently.

Incentive ($/MWh) Additional Renewables Used (MWh)
Proposed BESS

0.01 27.6 0
0.1 28.5 0
1 31.3 31.3
10 37.1 108.6

100 99.8 134.8

TABLE I
RENEWABLE ENERGY CONSUMPTION FOR VARIOUS PRICE INCENTIVES,

COMPARING THE FREIGHT RE-DISPATCH METHOD WITH BATTERIES.

IV. CONCLUSION

In this paper, we analyzed whether flexibility in electric
freight dispatch can be leveraged to offset fluctuations in
renewable energy generation. A problem formulation was
constructed containing components from the power system
and supply chain planning to create a coupled system that
minimizes the total cost of the system. A case study was
carried out to evaluate the effectiveness of the coupled system
formulation, comparing the proposed model with the battery
energy storage system. The case study demonstrated how
the proposed system benefited the network by altering the
warehouse capacity and modifying the number of trips taken
increasing the renewable generation utilization of the system.
Meanwhile, the comparison showed that the proposed model
was effective at using more renewables with lower incentives
in ($/MWh) than the battery energy storage system due to
not having large initial capital investments. Further research

should focus on a larger more realistic case study to analyze
the proposed model for a real-world problem.

REFERENCES

[1] Paul Denholm et. al, “The challenges of achieving a 100% renewable
electricity system in the united states,” Joule, vol. 5, no. 6, pp. 1331–
1352, 2021.

[2] H. Quan, D. Yang, A. M. Khambadkone, and D. Srinivasan, “A
stochastic power flow study to investigate the effects of renewable energy
integration,” in 2018 IEEE Innovative Smart Grid Technologies - Asia
(ISGT Asia), 2018, pp. 19–24.
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