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Feasible Region-Based Heuristics for Optimal
Transmission Switching
Constance Crozier, Kyri Baker, and Bridget Toomey

Abstract—In this paper, we develop a optimal transmission
switching (OTS) heuristic based on DC optimal power flow
(OPF) and assess the efficacy of the approach when implemented
within AC OPF. Traditional formulations of the OTS problem can
result in hundreds or thousands of binary variables for large
networks, making the OTS problem challenging to solve on fast
timescales even for relatively small networks. Here, we identify
which constraints and therefore which variables are constraining
the DC OPF feasible region, and rank them based on their
impact on the cost function. We develop a heuristic algorithm
which iteratively removes these constraints and solves a series of
standard DC OPF problems. The heuristic is tested on a variety
of PGlib networks and the results show that the algorithm can
provide substantial cost decreases without having to solve any
mixed integer programs. We provide additional insights about the
OTS problem, including identifying scenarios outside congestion
where OTS can prove useful. Lastly, the performance of the DC-
based heuristic is shown when the line switching decisions are
implemented within AC OPF.

I. INTRODUCTION

Optimal transmission switching (OTS) is a tool that can
allow grid operators to improve the economic efficiency and,
in some cases, reliability of the system by connecting or
disconnecting transmission lines [1]–[6]. OTS can also af-
fect million-dollar decisions made in transmission capacity
planning [7]. However, the OTS problem is computationally
challenging even using the linear DC optimal power flow
(OPF) model. This is because the problem contains binary
variables corresponding to the line on/off decisions. OTS
problems can take hours to solve using traditional computing
platforms, or be completely intractable for large power sys-
tems. Solving OTS problems in short timescales is an ongoing
challenge, as evidenced by the ARPA-E Grid Optimization
Competition Challenge 2 [8]. In this paper we focus on the
OTS problem only with regards to switching of transmission
lines, however there are other works which consider switches
at the distribution level for network reconfiguration (e.g. [9]–
[11]).

The full OTS problem uses the AC power flow constraints,
which are non-linear. However, mixed-integer non-linear opti-
mization problems are extremely challenging to solve – there
are no scalable open-source solvers, and the computational
complexity of the problem means it may not be solved in the
required time-horizon. Many formulations are instead based
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on the linearized DC power flow equations, which remove the
quadratic and sinusoidal terms from the problem constraints.
One common formulation for the line-switching constraints is
using the big-M method to remove the line flow constraints
of lines that are switched off [12]. The performance of the
resulting problem depends heavily on the strength of the
formulation, and finding the strongest upper bounds to be
used is NP-hard [13]. Bound strengthening methods have been
proposed for speeding up the formulation, e.g. for certain
network structures [14] or using data-driven methods [15].
Some formulations use a convex quadratic relaxation of the
AC power flow equations [16]–[18]. Others include a two-
level approach with an AC feasibility check at the lower
level [19], or incorporate additional constraints for the voltages
and reactive power [20]. These methods likely produce more
accurate power flow solutions, however they scale significantly
slower than fully linearized approaches.

Even the DC formulation of the OTS problem is NP-
hard, meaning that for large networks with many lines the
problem solution time may be prohibitively long. A reduction
in computational complexity of the OTS problem can be
achieved by reducing the number of switchable lines to be
considered. Towards addressing this issue, previous efforts
to reduce the solution space or pre-screen for relevant lines
of interest have been developed [6], [21]–[25]. In both [21]
for the RTS-96 bus system, and [22] for network sizes up
to 300 buses, power transfer distribution factors are utilized
to heuristically determine possible line switching candidates.
In [6], a ranking mechanism based on dual variables is
proposed and demonstrated on a 662-bus network to expedite
solving the OTS problem. Simplified versions of the OTS
problem that maintain mixed-integer characteristics can also
be solved in order to reduce computational complexity of the
full OTS problem [26]. In [23] machine learning methods are
investigated for line and algorithm selection in OTS. The line
outage distribution factors are used to screen lines in [25], and
shift factors are exploited in [24].

In [21], the authors noted that most economic benefits from
OTS arise from switching just a small number of lines. We
also aim to capitalize on this fact by identifying a subset of
lines to consider in the OTS problem, eliminating possibly
hundreds or thousands of binary variables and corresponding
constraints. Similar to [6], this paper also uses a scheme
based on dual variables and solving a sequence of simpler
DC OPF problems. However, in this paper, we also leverage
the relationships between those binding constraints and the
variables they are restricting in the primal problem. In this
way the algorithm attempts to distinguish which constraints, if
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removed, may increase the size of the feasible region. We also
do not require any additional tuning parameters or exogenous
variables; line removals are based solely on the links between
binding constraints and relevant variables.

Lastly, while DC OPF-based OTS has mainly been used
to lower overall system costs by alleviating congestion in the
network [1], [4], [27], [28], we show use cases where switch-
ing lines off can be useful outside of congestion management.
The developed heuristic for determining lines to switch off
is demonstrated on various Power Grid Lib - Optimal Power
Flow (PGlib) test networks [29], and a “less greedy” version of
the algorithm which has better performance but requires longer
computation times is discussed. The results are promising, and
in multiple cases the algorithm achieves the same solution as
the commercial optimization package Gurobi without solving
any mixed integer problems.

The proposed method can also be used to identify, or pre-
screen, a set of lines of interest that could be considered
in a full OTS formulation. The DC formulation of the OTS
problem used in this paper, and much of the literature, does
not guarantee optimality in the nonlinear AC problem. This is
because the linearization applied to the power flow equations
mean that the solution will necessarily not satisfy the AC
power flow equations [30]. However, methods for adjusting
the solutions of DC OTS to meet AC feasibility have been
proposed (e.g. [31]) and these could be coupled to the
method proposed here to produce AC feasible results. The
AC feasibility and cost benefits are additionally assessed in
this paper to show the efficacy of the DC-based heuristic when
the decisions are implemented using actual AC power flows.

II. COMPARING DC OPF AND ECONOMIC DISPATCH

In this section we derive an alternative formulation of DC
OPF that will facilitate the comparison between the feasible
regions of the DC OPF problem and the economic dispatch
problem. We discuss the system model, notation, and assump-
tions below.

• Assume a connected network with n buses and m lines.
Define pg as a vector of active power generation variables
pgi at bus i and pd a vector of active power demands
(which are constant and not variable) pdi at bus i.

• Define n×1 vector x = θ as the vector of voltage phase
angles at all buses its corresponding upper and lower
limits (element-wise) as x and x, respectively.

• Define n× n matrix B as the bus admittance matrix.
• Define m × n matrix F to be the matrix describing the

network connections, such that Fx computes the flow
down each line. Also define the m× 1 vector f to be the
vector of flow limits fk on each line k. For simplicity,
assume a flow constraint exists for each line (if a flow
constraint does not exist on line k, set fk >

∑
pd such

that this constraint is never active).
• Define n × 1 vector y = pg − pd and its correspond-

ing upper and lower limits (element-wise) as y and y,
respectively.

A. DC OPF with only inequalities

The DC OPF problem with line flow constraints can then
be written as:

min
x,y

cTy (1a)

s.t : Bx = y (1b)
−f ≤ Fx ≤ f (1c)

y ≤y ≤ y (1d)

x ≤x ≤ x (1e)

where c is a n × 1 vector of cost parameters. Given that the
vector pd is not a variable, this objective is equivalent to
the standard objective of minimizing a linear function of the
generator costs, providing there is no more than one generator
per bus. Constraint (1e) provides bounds on voltage angles that
are seen in many formulations (e.g. [1]) but may or may not
exist. Note that only generation is penalized in the standard DC
OPF formulation, and so any bus that only contains demand
will have a corresponding cost of zero. Using the relationship
y = Bx1, (1) can be rewritten in terms of voltage angles x:

min
x

cTBx (2a)

s.t : − f ≤ Fx ≤ f (2b)
y ≤ Bx ≤ y (2c)

x ≤ x ≤ x (2d)

Problem (2) is now only in terms of inequality constraints.
By analyzing which of these constraints are binding at the
optimal solution, we can attempt to identify a subset of lines
which could be restricting the feasible region. Note that the
formulation and same intuition explained here can be extended
to consider both switching lines off as well as switching lines
back on.

B. Alternate Economic Dispatch Formulation

Economic dispatch (ED) is a purely market optimization,
which selects the cheapest generators irrespective of their
position on the network. The ED problem can be written using
the given notation as follows:

min
y

cTy (3a)

s.t :

n∑
i=1

yi = 0, (3b)

y ≤y ≤ y (3c)

where constraint (3b) represents power balance. The optimal
objective value of economic dispatch provides a lower bound
on the DC OPF objective, because it uses the cheapest possible
generation. If this solution is obtained from the DC OPF, then
no congestion or “overconstrained” voltage angles that result

1Note that in order for y = Bx to have a unique solution, B must be
invertible; this can be achieved by fixing the slack bus angle to 0 and removing
that respective row/column of the B matrix.
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Constraints: None Line Limits Line Limits w/OTS θ Limits θ Limits. w/OTS Ref. Bus Ref. Bus w/OTS
Pg1 500 400 500 251.5 500 Infeasible 500
Pg2 0 100 0 249.5 0 Infeasible 0
Ref. Bus 1 1 1 1 1 3 3
Angle None None None θ2 +/-60◦ θ2 +/-60◦ θ2 +/-60◦ θ2 +/-60◦

Line Limits None 200 on Line 1-3 200 on Line 1-3 None None None None
Line Status All on All on Line 1-3 off All on Line 2-3 off All on Line 1-2 off
Cost $6000 $7200 $6000 $6745.28 $6000 Infeasible $6000

TABLE I
THREE-BUS RESULTS FOR DIFFERENT SCENARIOS WHERE LINE SWITCHING CAN BE USEFUL.

in price increases exist. However, if the DC OPF solution is
not equal to the ED solution, it is possible (but not guaranteed)
that OTS will be useful. Recall that, even without line flow
constraints, the DC power flow equations provide relationships
between voltage angles that may constrain the system and
eliminate the ED solution from the feasible set. Where the
solutions are not equal, we will use these constraints to
determine which lines may be of value to switch.

Towards this, we form the ED problem in terms of voltage
angles instead of active power generation variables by substi-
tuting y = Bx:

min
x

cTBx (4a)

s.t :

n∑
j=1

n∑
i=1

bijxj = 0, (4b)

y ≤ Bx ≤ y (4c)

where bij is (i, j) entry of matrix B and xj is the j-th entry
of vector x. It is now more evident that the DC OPF imposes
additional constraints (2b), and optionally, (2d). Thus, our
efforts should focus on which of these is restricting the feasible
region of (2).

III. INSIGHTS INTO WHEN DC OTS IS USEFUL

Consider the following three-bus example for the situations
discussed in this section. Binding constraints are shown in red
in each figure to indicate the subset of the constraints that are
restricting the feasible region from achieving the ED solution.

Fig. 1. Example 3-bus network.

In all of the following examples, assume that all line
susceptances are equal (b12 = b13 = b23 = −1), there
are no maximum generation outputs on the generators and
the minimum generation output is 0 MWh. Three different
scenarios where switching off three different lines in the

network can benefit the overall system cost are discussed, and
a summary of the results in the following sections are also
shown in Table I.

A. When congestion is present

A canonical example of the value of OTS is in the pres-
ence of congestion. For this scenario, we do not consider
upper/lower bounds on voltage angles, and θ1 = 0◦ is the
reference bus. Set the maximum flow limit along line 1-3 (in
either direction) to have a magnitude of 200 MW, and notice
that the system cost is $7200, with an increase of $1200 due
to congestion. Then, remove line 1-3 from the network, as
shown in Fig. 4. The system cost then becomes $6000.

Fig. 2. Congested 3-bus network improves with OTS, with system costs going
from $7200 (left) to $6000 (right).

B. When voltage angles are over-constrained

According to [32], the Braess’s paradox occurs in optimal
transmission switching problems due to the need for Kirchoff’s
voltage law (KVL) to hold around every loop in the grid (the
sum of all voltage angle differences around a loop must be
zero). This can “overconstrain” the values of some of the
optimization variables, reducing the feasible region such that
the achievable optimal solution worsens. Consider the three-
bus network without any line flow constraints. Now, enforce
−π3 ≤ θ2 ≤ π

3 which is a reasonable and not overly conser-
vative bound. Due to the restriction on the angles (θ1 = 0,
θ2 bounded, and relationships between angles enforced by the
power flow equations), the system cost becomes $6745.28.
Remove line 2-3 and notice that the system cost is now $6000.

C. Choice of reference bus

In optimal power flow, the selection of a reference bus
provides a reference for which all other bus angles are mea-
sured; however, a poor choice of reference bus can lead to
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Fig. 3. Angle-constrained 3-bus network improves with OTS, with system
costs going from $6745 (left) to $6000 (right).

overconstrained voltage angles. Consider the scenario men-
tioned in the previous subsection, where −π3 ≤ θ2 ≤ π

3 .
If bus 3 is chosen as the reference bus and θ3 = 0◦, the
problem actually becomes infeasible. However, if line 1-2 is
removed, the problem becomes feasible, and the optimum cost
function value of $6000 is attained. Again, this is due to the
overconstraining of voltage angles and relationships between
angles. Note that if the constraint on θ2 is removed, the DC
OPF attains a feasible solution with a system cost of $6000
even the reference bus chosen to be bus 3. This is a special
case of the previous scenario of overconstraining a voltage
angle.

Fig. 4. Infeasible 3-bus network improves with OTS, achieving $6000 (right).

D. Generalizations and cautions

Unfortunately, it is not always the case that the cost function
can be improved by switching lines off. Switching some lines
off, even if the network is still fully connected, may also result
in infeasiblity (e.g. consider the case in Section III-A and
attempt to disconnect line 2-3). In addition, it is important
to note that although the example in Section III-A indicated
that the optimal solution was to turn off the congested line,
this is not always the case. Lastly, it is not normally observed
that the choice of the reference bus or constraints on voltage
angles will impact the feasible region of the problem on larger
systems. The three-bus is useful for illustrating these broad
concepts but in larger networks the angle relationships from
these constraints are typically not as restrictive.

It is also important to note that we do not consider N-1
security in this paper, although this would be an important
consideration in practice to avoid sacrificing reliability in order
to improve cost [33], [34]. Additionally, it has been pointed out
by some authors [3], [35] that lines switched off in a DC OPF
formulation may not provide optimal switching choices under

an AC OPF framework. Towards analyzing how this particular
heuristic impacts the AC feasibility and cost benefits within
AC OPF, we provide results on all of the considered test cases
assessing the performance of the DC-based heuristic within a
more realistic AC OPF environment.

IV. NARROWING DOWN LINES OF INTEREST

Using the intuition gleaned from the scenarios in the previ-
ous section and the formulations of ED and DC OPF in terms
of bus angles only, we now design an algorithm to determine
which lines, if switched off, may increase the size of the
feasible region. Formulating the ED and DC OPF problems
in terms of only voltage angles allows us to more easily
determine which constraints restrict the feasible region in DC
OPF.

A. Constraint analysis

The Lagrange multipliers corresponding to the constraints
in the DC OPF and ED problems represent the sensitivity of
violating that constraint with respect to a change in objective
function value. With respect to the inequality constraints, the
Lagrange multipliers represent whether or not their respective
constraints are impacting the objective function at all, and
by what severity. Thus, by analyzing the nonzero multipliers
corresponding to constraints (2b) in (2), we can determine
which constraints may be restricting the feasible region.

For example, consider the aforementioned three-bus net-
work in the congestion scenario described in Section III-A.
The constraint b13(θ1 − θ3) ≤ 200 was binding (with a dual
variable value of $9), and the constraint b13(θ1− θ3) ≥ −200
was non-binding. Additionally, the reference bus was chosen
to be bus 1, so θ1 = 0◦. This possibly indicates that θ1
or θ3 is overconstrained, and if either were less constrained,
they could possibly take on a value which reduces the overall
system cost. To alleviate the constraints on these variables with
line switching, we can eliminate line 1-3, eliminating the only
additional binding constraint (compared to ED), and thus by
directly eliminating this constraint the cost is reduced.

As a second intuitive example, consider the angle-
constrained scenario with no flow limits and reference bus
θ1 = 0◦ as described in Section III-B. In this scenario, the
binding constraint is θ2 ≤ π

3 . Here, the binding constraint
can again be directly eliminated by simply eliminating the
bounds on voltage angles, as these bounds are typically used
to expedite solution times [1]. However, if we want to use
OTS to improve the solution rather than eliminating voltage
angle constraints, we can analyze the other elements which
impose constraints on θ2: the lines 1-2, 2-3, and the selection
of reference bus as bus 1. If we instead change the reference
bus to be bus 2, that forces θ2 to be within bounds and we
attain the ED solution of $6000. If we instead switch off line
1-2, this removes an additional constraint on θ2 while keeping
the pathway to the cheapest generator open, and we again
attain $6000. However, if we eliminate line 1-3, although a
constraint on θ2 is lifted, the cost increases slightly as our
best path to the cheapest generator is eliminated.
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While these examples are intuitive on a small system, the
question arises of how to streamline this decision procedure.
We discuss this algorithm next.

B. Line switching heuristic

The previous subsection narrowed three possible scenarios
where OTS could be of value (that is, in DC OPF; in AC
OPF, additional scenarios exist): when congestion is present,
when constraints on voltage angles exist, and when the slack
bus is chosen poorly. Since constraining the voltage angles
and choice of slack bus are computational tools in OPF, we
focus on the benefits of OTS resulting from congestion. For
simplicity, consider problem (2) without (2d). Then it is clear
to see that the only difference between the DC OPF and ED
problems is constraint (2b).

Call the cost function evaluated at the optimal solution to
the ED problem (4b) f∗ED and cost function evaluated at
the optimal solution to the DC OPF problem (2) without
transmission switching f∗DC . Define the m × 1 vectors of
Lagrange multipliers λ and λ corresponding to the lower and
upper limits of (2b), respectively. Lastly, define Ns as the
allowable number of simultaneously switchable lines. Here,
only switching lines off is considered; however, the algorithm
can easily be extended to also consider switching lines on.

The heuristic line switching algorithm can be thus defined
as follows:

1) Solve Economic Dispatch and obtain f∗ED.
2) Solve DC OPF and obtain f∗DC .
3) If f∗ED = f∗DC , stop. OTS cannot improve the system

cost.
4) Else, that means there exists at least one λj or λj that

is positive (note that λj · λj = 0).
5) Collect all (the absolute value of) nonzero multipliers in

decreasing order of magnitude in an ordered set Ωλ.
6) Each value of Ωλ corresponds to a flow constraint which

contains two variables (angles), xk and xl. Starting with
the first element of Ωλ, systematically remove each line
constraint that contains variable xk and/or xl. Solve the
DC OPF with this constraint removed, and, if feasible,
store the resulting cost. If at any point f∗DC = f∗ED from
one of the constraint removals, stop and terminate the
algorithm as the OTS solution has been reached. If there
are a large number of elements in Ωλ, a subset of the
largest elements can be considered instead.

7) Permanently remove the single constraint that results in
the lowest cost solution.

8) If Ns > 1, repeat starting from step 5). Else, stop.
Typically, even a small number of lines can be switched

off to make a significant decrease in overall system cost [21];
thus, the number of elements in Ωλ that should be explored
can be small. Additionally, if the number of switchable lines
Ns is small (which may be likely to happen if N-1 security is
considered), the above algorithm simply results in solving a
sequence of DC OPF problems. We show the efficacy of this
approach in the next section. Note that, there is a danger of
creating N-1 islands with the proposed approach (cases where,
if there was a single line failure, sections of the network would

become islanded). If N-1 security is required of the network
then a check should be performed before each switching
decision is made to ensure than no line failures will result
in islanding. It is necessary to perform this check before each
line switch, because each switching decision will change the
N-1 contingencies.

V. SIMULATION SETUP

In this section we show the results of the heuristic versus the
true OTS solution, analyze pitfalls and characteristics of the
heuristic, and develop a “less greedy” version of the proposed
algorithm.

A. Software and datasets

We used Gurobi within Python 3.7 on a MacBook Pro to
perform the mixed-integer optimization for comparison with
the heuristic. The Power Grid Lib - Optimal Power Flow
(PGlib) networks were used for the 14, 30, 118, and 200-
bus networks [29]. The basic parameters for each of these
networks is shown in Table II. Note that some generators
are synchronous condensers and do not produce active power
(and thus are not included in DC OPF). Lastly, the maximum
number of switchable lines was set to be 10 in all test cases.

Larger networks (500 buses and above) were intractable
on our computing platform due to the number of integer
variables. If Gurobi could not finish the optimization within
12 hours, the optimization was terminated. Other networks
tried such as the ACTIVSg200 200-bus system [36] were
not found to benefit from optimal transmission switching
(although some scenarios where OTS is useful may exist), even
when congestion was present in the system. More thoroughly
analyzing what network characteristics make OTS more or less
useful is an interesting direction for future work.

B. Optimal Transmission Switching Formulation

Here, we use the big-M formulation for the OTS problem
that is used in Fisher’s canonical OTS paper [1] and countless
subsequent works. This formulation will be used to quantify
the success of our developed heuristic. We slightly modify the
objective function to very lightly penalize turning lines off, as
follows:

min

|G|∑
i=1

aip
2
gi + bipgi + ci −

|L|∑
j=1

γzj , (5)

where G and L are sets of network generators and lines, re-
spectively; |·| denotes set cardinality; ai, bi, ci are nonnegative
cost coefficients corresponding to generator i; zj ∈ {0, 1} is a
binary variable indicating if line j is active (1) or inactive
(0); and γ is a very small number (here, 0.01). Including
γ penalizes turning off additional lines unless the benefit to
the cost function is nontrivial. Note that the actual DC OPF
cost function can be recovered after the optimization by then
adding

∑|L|
j=1 γz

∗
j to the objective value.
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TABLE II
TEST SYSTEMS AND PARAMETERS

System Buses Lines Generators
case14 14 20 5
case30 30 41 6
case118 118 186 54
case200 200 245 49

C. Illustration on 14-bus example

For clarity we demonstrate the heuristic on a smaller exam-
ple (the 14-bus system).
• Solve Economic Dispatch. The objective value is:

$2051.52.
• Solve DC OPF. The objective value is: $2625.88.
• f∗ED 6= f∗DC .
• Since these are not equal, OTS could be of value.
• In this case, there is only one nonzero multiplier, so Ωλ =
{18.31}.

• The multiplier of value 18.31 corresponds to a constraint
on θ1 and θ2. Systematically remove line constraints
which contain these two variables.

• Remove line 1-2: Infeasible. Remove line 1-5: Infeasible.
Remove line 2-3: Cost is reduced to $2361.45.

• Store new nonzero multipliers. Now Ωλ = {18.19, 3.77};
the first of which corresponds to constraints on θ1, θ2, and
the second of which corresponds to constraints on θ2 and
θ5.

• Remove line 1-2: Infeasible. Remove line 1-5: Infeasible.
Remove line 2-4: Infeasible. Remove line 2-5: Optimum
f∗ED is attained. Stop.

While the 14-bus example is a relatively simple and suc-
cessful use case for the proposed algorithm (as the economic
dispatch solution is attained), in the next section we will see
the current pitfalls with the above algorithm.

D. Less-greedy version

The algorithm proposed in Section IV-B is “greedy” in the
sense that in each iteration, the line removal corresponding
to the greatest immediate decrease in cost function is chosen
as the final action. However, naively choosing the lowest cost
option in the beginning of the algorithm greatly restricts which
lines can be selected later in the algorithm.

To illustrate this, consider Fig. 5, which demonstrates the
behavior of the algorithm on the 30-bus system with the default
line limits and system loading. Each subsequent iteration of the
algorithm is shown from left to right, including which angles
are constrained in that iteration, and the corresponding lines
that contain that angle. Each line and its respective objective
function value, if removed, are plotted horizontally across each
iteration block and ordered vertically from highest cost at the
top to lowest cost at the bottom.

The initial system cost (before OTS) is $7,504, and the
economic dispatch cost (the lower bound) is $5,639. The top
subfigure illustrates the four iterations of the greedy algorithm
- in the first iteration, line 6 is chosen to shut off, as it results
in the lowest cost function value. However, this results in
suboptimal decisions later on, with the final resulting cost

(after three lines are shut off) of $6,762. Now consider the
bottom subfigure. In the first iteration, instead of selecting line
6, line 5, which has a very similar cost, is selected. The rest
of the algorithm is then run, and this “less greedy” version
achieves the global optimal solution. The results comparing
these algorithms on two of the 30-bus scenarios are shown in
Table IV. Note that suboptimal choices could be chosen in
subsequent iterations as well (and these decision trees can be
parallelized).

As indicated in [21], typically only a small subset of lines
are responsible for the majority of the reduction in objective
function. This process can be continued (selecting shut-off
actions which are within a 5% or so of the lowest cost decision
in that iteration) until the available allotted time is reached.

VI. SIMULATION RESULTS

Table III shows the results of the heuristic as compared to
the solution attained by Gurobi for certain scenarios within
the chosen networks. For networks larger than 200 buses, the
number of integer variables is quite large, and the runs did
not finish within the given maximum 12 hour timeframe. In
addition to computational savings, the proposed heuristic does
not require a mixed integer solver at all, or any additional
parameters, which means that just a sequence of standard
DC OPF problems can be solved. The algorithm can also be
terminated at any point, as it iteratively improves over time.

There are a couple items to note from this table. First, note
that the number of DC OPFs that the heuristic solves is far
less than the number of DC OPFs that would be required to
solve if a brute-force approach was taken. Then, the possible
number of configurations that would have to be tested in a
brute force approach is:

Ns∑
i=1

(
|L|
i

)
(6)

Assuming (ignoring N-1 considerations) the maximum number
of lines that can be switched off is the number of lines minus
the number of buses, a brute force approach on the 30-bus
network would require running 4,754,293,703 DC OPFs. The
number of cases that would have to be run for the 118-bus
system is approximately 1.49·1052. Even though each DC OPF
for the 118-bus system only takes on average 0.09 seconds,
this would equate to 1043 years. Using the restriction of only
up to 10 switchable lines, the number of possible scenarios for
the 118-bus system would still be 1.49 · 1016 which is much
greater than the number of DC OPFs required by the heuristic
(345 in this example). Lastly, due to the resulting nonconvexity
of including binary variables, using a mixed integer solver is
often more time consuming than solving a series of convex
problems. For example, in the given 118-bus case, Gurobi took
approximately 740 seconds to solve, and the 345 DC OPF
problems in total took under 100 seconds to solve.

Figure 6 shows the objective function value as subsequent
lines are removed with each iteration. A decent reduction in
cost is observed within the first half of iterations in both the
118-bus case (left subfigure) and the default 30-bus case (right
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Fig. 5. An illustration of the lines of interest in each iteration of the heuristic algorithm, corresponding constrained voltage angles, and resulting objective
function values for removing that line. The algorithm’s behavior is shown for the 30-bus network in the top figure and the “less-greedy” algorithm’s behavior
is shown in the bottom figure. The latter selects slightly suboptimal choices in the beginning which help improve cost later on.

TABLE III
OVERALL RESULTS COMPARING THE HEURISTIC’S COST IMPROVEMENTS TO THE COMMERCIAL MIXED-INTEGER SOLVER GUROBI. MIDDLE COLUMN:

GUROBI’S RESULTS FOR IMPROVING THE OBJECTIVE BY TURNING OFF LINES. RIGHT COLUMN: THE HEURISTIC’S RESULTS FOR IMPROVING THE
OBJECTIVE BY TURNING OFF LINES.

System % Improv.
Gurobi OTS

# Lines
Switched

% Improv.
Heuristic

# Lines
Switched

# DC OPFs
Solved

case14 (150 MW line lim,
default loading) 21.87% 2 21.87% 2 7

case30 (default line lim,
default loading) 24.85% 2 9.89% 3 29

case30 (default line lim,
98% loading) 26.22% 4 10.03% 4 35

case118 (default line lim,
110% loading) 1.40% 10 1.37% 10 345

case200 (200 MW line lim,
default loading) 0% 0 0% 0 5

TABLE IV
THE BEHAVIOR OF THE LESS GREEDY HEURISTIC ON THE CHOSEN 30-BUS SCENARIOS.

System % Improv.
Gurobi OTS

# Lines
Switched

% Improv. Less
Greedy Heuristic

# Lines
Switched

# DC OPFs
Solved

case30 (default line lim,
default loading) 24.85% 2 24.85% 2 37

case30 (default line lim,
98% loading) 26.22% 4 25.58% 2 40

subfigure). Note that the 118-bus system was capped at a Ns =
10 lines, but other termination criteria could also be used,
such as when the current optimal solution ceases to change
dramatically.

A. OTS doesn’t always help

One obvious insight is that OTS is not always the solution
for achieving lowered system costs. For the 200-bus network,
we were unable to find a situation where OTS was useful;
however, the heuristic came to this conclusion much faster,
as only 5 DC OPFs (one iteration) within the algorithm

were solved before concluding that removing lines could
not improve the objective function. This was confirmed by
Gurobi’s lack of finding any lines to turn off as well. This is
an interesting case because it demonstrates that even under
congestion and under high or low loading, OTS may not
necessarily be of value.

B. The value of OTS does not necessarily increase with system
loading

Consider the 30-bus cases in both Table III and Table IV,
where the default network is simulated and the network with a
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Fig. 6. Objective scores as each line gets removed during the iterative process
for the 118-bus (left) and 30-bus default case (right).

Fig. 7. A magnified portion of the 118-bus network. The voltage angle at
bus 49 is highly constrained as bus 49 is connected to a significant number
of other buses.

uniform 2% decrease in load across the network is simulated.
Surprisingly, under the more lightly loaded system, the savings
from OTS is greater, and the number of lines switched off
is also greater. Indeed, higher system loading can actually
decrease the amount of congestion in the network as it affects
the direction and magnitude of power flows throughout the
network.

C. It’s not (just) about turning off congested lines

The key point that this algorithm relies on is that lines
that are advantageous to turn off are the ones which contain
voltage angles that appear in a high number of constraints.
For example, consider the 110% loaded 118-bus system.
Initially, lines 31, 106, and 163 are congested. Removing any
of these congested lines increases the cost. However, line
106 contains θ49, which is a highly constrained angle - it
appears in 12 constraints. Removing line 71, one of these
constraints, alleviates the restriction on θ49 and reduces the
system cost. Additionally, many subsequent decisions in the
algorithm chose to remove lines that were connected to bus
49 such as lines 75, 76, and 70. See Fig. 7 for a zoomed-in
view of the 118-bus system and it is clear how many power

flow constraints θ49 would appear within, and how this could
possibly “overconstrain” this variable.

D. Greedy vs. Less Greedy Heuristics

Since the greedy version of the algorithm switches the
lowest cost lines off at each iteration, the algorithm cannot
always find the optimal sequence of lines to turn off. This is
seen in the two 30-bus cases, where the heuristic still yields
a cost reduction, but it is not as significant as the mixed-
integer formulation, and sometimes more lines are turned off
than necessary. However, the greedy version is much faster
and requires fewer computations. One benefit of both versions
of the heuristic is that the process can be terminated at any
point, and the optimization routines could continue until the
allotted time is reached. In addition, the less greedy algorithm
can run different trajectories in parallel.

VII. IMPLEMENTATION WITHIN AN AC FRAMEWORK

As mentioned in the introduction, some DC-based heuristics
can produce AC-infeasible line switching decisions or increase
the system cost in practice. Indeed, there is no guarantee that
even the exact OTS MILP formulation implemented in Gurobi
obtains a solution that is feasible for the AC OPF problem,
although it may appear to be optimal for the DC OPF version.
Further, DC OPF itself produces generation dispatch solutions
that do not satisfy the AC power flow equations [30], and thus
analyzing the optimality gap between the heuristic and the
MILP solution from Gurobi does not offer insight into how
the switching decisions would impact a real power system. In
this section, we analyze the benefit of the DC-based heuristic’s
lines of interest when implemented on actual AC power flows.

A. The heuristic as a pre-screening tool

Consider the DC-based heuristic (either greedy or non-
greedy) as a pre-screening tool which can identify a set of
lines of interest. This has significant computational benefits; as
described in Section VI, even a DC OPF based MILP can take
over seven times as long to solve versus the heuristic on a 118-
bus system. Thus, we propose a two-step process: First, we use
the heuristic, run to completion, to determine a set of lines to
consider. Next, we run a series of AC OPFs iterating through
all possible combinations of line shut-offs. With a realistic
number of possible lines to turn off simulatenously (e.g. likely
less than 5 unless a very large network is considered), this
results in a relatively small number of continuous AC OPFs
to solve, which can be done efficiently by existing off-the-shelf
solvers.

B. AC OPF for results with Ns = 4

The same four test cases where OTS was considered useful
in Section IV-B are considered here, with the maximum
number of switchable lines Ns set to 4 in all cases. Using the
method described in the previous subsection, each combination
of 1 or 2 line shut-offs (in the 14-bus and default 30-bus case)
and 1, 2, 3, and 4 line shut-offs (in the second 30-bus and
118-bus cases) are subsequently tested by removing these lines
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Fig. 8. Cost improvements across each test case considering the pre-screened
lines of interest from the heuristic implemented in an AC OPF framework.
White indicates that scenario was not considered (e.g. the heuristic did not
indicate that many lines of interest) and black indicates infeasibility.

from the AC OPF formulation. For simplicity, the particular 1,
2, 3, or 4 lines that were turned off is not indicated here, as this
figure is meant to show the general concept of the heuristic
when applied using actual AC power flows.

As seen in Fig. 8, each of the considered cases finds a
transmission switching solution that improves the cost function
above the original AC OPF cost function without any lines
turned off (indicated by the color of each cell). In fact, for
the first three test cases (except the 118-bus), no feasible
solution is found for line switching that results in a higher
cost within the AC OPF. However, these same three cases do
encounter multiple infeasible solutions. The 118-bus case does
not have any infeasible topologies, but does suffer from many
solutions which increase the overall system cost. In all cases,
interestingly, the number of turned off lines that achieved
the largest cost decrease is lower in the AC case than the
DC heuristic indicated. For example, the 14-bus and default
30-bus case have the lowest cost when one line is shut off,
versus the heuristic which found that shutting off two lines
could reduce the cost the most. The same was found in the
second 30-bus and 118-bus case, where one of the possible
three-line combinations lowered the cost the most, versus the
heuristic choosing four lines. This is consistent with what grid
operators in practice may be willing to perform in any given
time instance - more than a few simultaneous line switching
actions for economic reasons is relatively unlikely.

VIII. CONCLUSION

This paper proposed a simple heuristic to perform optimal
transmission switching that required no tuning parameters,
avoided solving any mixed integer problems, and simply
involved solving a series of standard DC OPF problems. The

idea behind the heuristic focused on the idea that OTS can
be used to enlarge the feasible region of the DC OPF prob-
lem towards the solution of the economic dispatch problem
(although it is not necessarily true that the economic dispatch
solution can be reached with OTS).

Results were shown on a variety of PGlib networks and the
efficacy of the heuristic and its “less greedy” counterpart were
demonstrated. The proposed algorithm can also be used as a
pre-screening tool for selecting a subset of lines to be included
in a full OTS problem. Towards this, the DC-based heuristic
was used to pre-screen a set of lines that were then included in
a full AC OPF problem. The results showed that the heuristic
was able to identify a set of line switching actions that reduced
the cost in each of the considered scenarios, although the cost
reduction was not as significant in AC as it was from the DC
formulation.

Future work includes testing the algorithm on even larger
systems, attempting to find network characteristics that make
OTS useful, and developing a stochastic version of the less
greedy algorithm that can help expedite convergence. In ad-
dition, a very important direction of future work is to ensure
that the heuristic produces AC feasible and AC cost effective
switching decisions.
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