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A B S T R A C T

The number of electric vehicles on the road in the UK is expected to rise quickly in the coming years, and this is
likely to have an impact on the operation of the power grid. This paper first quantifies the consequences of
allowing a completely electric fleet to charge freely, then considers whether there is a practical way in which the
impacts can be mitigated. We predict that, with an entirely electric fleet, the UK power generation capacity
would need to increase by 1/3. We show that it is possible to completely mitigate this with controlled charging,
although substantial infrastructure would be required. However, we propose a simple scheme which could
largely avoid the negative effect and does not require the creation of new infrastructure. We show that this
reduces the projected increase in peak electricity demand by 80–99%.

1. Introduction

This paper considers whether there is a practical way in which we
can prevent the increase in peak power demand resulting from a large
fleet of electric vehicles (EVs).

Electric vehicles (EVs) have the potential to drastically reduce the
national carbon footprint; as well as having zero tail-pipe emissions, the
electricity required to power them can be produced through renewable
sources. Van Vliet et al. (2011) confirm that regardless of the source of
the electricity, EVs produce fewer CO2 emissions than both conven-
tional and hybrid vehicles. It is the general consensus that EVs could
also increase the amount of renewable energy that is brought online
without negatively impacting the grid (Richardson, 2013). This is
particularly true with relation to solar (Birnie, 2009) and wind (Short
and Denholm, 2006).

The 2008 Climate Change Act commits the UK to a reduction target
of 80% by 2050, and this has led the government to introduce grants to
encourage people to purchase EVs. Coupled with the decreasing price of
lithium ion batteries this has lead to a rapid increase in the adoption of
EVs in the UK, as shown in Fig. 1. More recently, a ban on the pro-
duction of diesel and petrol vehicles after 2040 was announced
(Asthana and Taylor, 2017) so the move to all-electric now seems ex-
tremely likely.

However, a large-scale adoption of EVs will present significant
challenges to the power grid. Electric vehicle chargers draw a large
amount of power relative to standard household appliances (see
Table 1). Unlike other high-power appliances vehicle chargers will be

on for several hours, meaning that there is a much larger chance that
many in the same area will be on at the same time. This stands to in-
crease the current peak power demanded from the grid. As well as the
peak power, the amount of electricity required in a day by households
will be larger; (National Grid, 2017b) predicted a maximum increase of
11% in household electricity demand due to charging by 2050, while
(Andrews, 2016) estimated that the UK electricity needs would grow by
36% if all vehicles were electric. Both of these studies were simplistic,
and their disparity highlights the sensitivity of predictions to the un-
derlying assumptions in such models. The latter assumes that elec-
trification will not change the number of vehicles on the road, while the
former uses sales and scrappage projections to arrive at an updated
number.

In the UK, power generation is limited to 78 GW (Department for
Business, Energy and Industrial Strategy, 2016), meaning if all power
generators operate at full capacity this power is produced. In practice
this is not possible as 9 GW of this is from wind and solar power which
are variable, and tend to be negatively correlated with each other
(Widen, 2011).

If the peak demand regularly exceeds the available supply, more
generation will need to be built. For exampled, the Hinkley Point C
nuclear power plant currently under construction will add a capacity of
3.2 GW at a cost of up to$21 billion (UK Government, 2016).

The high cost of building additional generation places a large value
on shifting demand to off peak times. While the amount of electricity
required is not changed, by spreading it throughout the day the demand
can be met though increased operation of existing power stations.
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Smart charging refers to charging EVs in a controlled way so as to
reduce the impact on the system. This is possible because vehicle
charging represents an elastic demand; people don't mind whether their
vehicle is on charge or not provided it has charged by the time they next
need it. By contrast, normal household demand can be considered in-
elastic - appliances such as lights and microwaves require power at the
instant they are turned on. While some trials are on-going, smart
charging is not yet widely implemented in any country.

Here we focus on the case of the UK; although the methods could be
used to repeat the research for a different area, the conclusions may not
be the same. Only domestic vehicle use is considered, electrification of
other transport (e.g. taxis and buses) would further increase electricity
requirements. This paper focuses specifically on the national energy
balancing problem, ignoring limits imposed at the local level by dis-
tribution system infrastructure.

Only currently available technology is included, meaning autono-
mous vehicles are not considered and neither are vehicle-to-grid
schemes - where a vehicle can both give and receive power to and from
the grid.

To consider a practical way of smart charging, this paper first (in
Section 2) considers the charging infrastructure already available and
outlines schemes previously proposed. Before assessing the success of
smart charging the impact of a large electric fleet needs to be quanti-
fied; in Section 3 the methodology for doing this is presented, along
with both an optimal and an approximate charging scheme. The pro-
posed techniques are tested using data from the UK in Section 4, and the
implications of the results are considered in Section 5.

2. Background

This section first considers the way in which people currently charge
their vehicles, as a practical smart charging regime should not propose
great deviation for standard practice and comfort of EV owners. Then
an overview of the previously proposed schemes is given, and the
reasons they are not practically implementable are explained.

2.1. Charging Infrastructure

Currently EV owners can choose to charge their vehicles from one of
three types of charging points, summarised in Table 2. Given that their
cars are parked there overnight, many customers have domestic char-
gers installed at their homes. These are predominantly slow chargers,
but consumers can pay more to have a fast charger instead.

Once plugged in, EV batteries are charged under the constant cur-
rent, constant voltage (CC-CV) scheme; chargers operate under a constant
current until the battery is about 80% charged, when it switches to a
constant voltage (decreasing current) until the battery is full. In power
terms this means the charger runs at full power until 80% and then
decreases exponentially to zero.

This charging profile is recommended by manufacturers in order to
maximize battery lifespan, as empirical studies have observed lower
levels of degradation compared to other methods (Zhang, 2006). A
smart charging strategy would likely alter this profile, and the effect on
the lifetime of car batteries would need be considered. However, this is
beyond the scope of this paper.

The majority of drivers still see lack of public charging facilities as a
reason not to purchase an EV (Office for National Statistics, 2016). This
has led scientists to focus on ways to make charging more convenient,
rather than minimising the charging impact; research into a cost-ef-
fective rapid charging network in the UK is already underway
(Serradilla et al., 2017), despite this level of charging being the most
potentially damaging to the grid.

2.2. Previously proposed strategies

An extensive array of smart charging strategies have already been
proposed, and these can be broken down into three categories: time-of-
use (TOU), centralised and decentralised schemes.

In TOU strategies a variable electricity price is introduced in order
to incentivise charging at off-peak times. Charging is still under a CC-CV
profile, and consumers have complete control over when they decide to
charge. Lyon et al. (2012) conclude that TOU is the most cost effective
way to shift charging, due largely to the low required infrastructure
cost.

Cao et al. (2012) show that if every consumer acts to minimize the
cost of charging their vehicle then valley-filling can be effectively
achieved by appropriately setting the price. However, consumers are
unlikely to work out their individually optimal charging strategy. In
Langbroeka et al. (2017) a survey is conducted which attempts to gauge
how consumers might change their charging habits in response to dif-
ferent pricing structure. However Hobman et al. (2016) note that his-
torically the responses of consumers to cost-reflective pricing have not
met expectation, and attribute this to psychological influences. There-
fore, designing a tariff system which successfully shifts EV charging
demand may be more complicated than it appears.

Another concern with TOU is that setting deterministic pricing
bands may encourage all EVs to do the same thing, removing the nat-
ural diversity which the grid relies on. A possible extension to TOU
which resolves this is to move to real-time pricing, where the price of
electricity depends on the number of vehicles currently charging.
However, Lyon et al. (2012) estimates that installing the infrastructure
required to do this would be more expensive than increasing the

Fig. 1. The number of vehicles eligible for the plug in electric grant on the road
in the UK.

Table 1
Power consumption of various household appliances.

Appliance Power consumption (W)

Washing machine 700
Kettle 1800
Refrigerator 35
LCD TV 115
EV slow charger 3500

Table 2
The types of vehicle chargers currently available to consumers, according to the
terminology defined by Zap-Map (2017).

Charger type Power (kW) Charging time

Slow 3.5 6–8hrs
Fast 7 3–4hrs
Rapid 50 80% in 30–60mins
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available generation capacity to allow uncontrolled charging.
Unlike TOU, centralised and decentralised schemes directly control

vehicle charging. This means that the success of the scheme is not de-
pendant on consumer behaviour, provided they participate in the
scheme.

In the centralised case, there is a single controller with access to all
vehicle's individual requirements, who dictates how they will charge.
An existing example of such a scheme is storage heaters in homes with
Economy 7 (a differential tariff provided by UK suppliers which offers
cheap off-peak electricity). In this case a radio teleswitch is used to
switch on/off the heater when the cheap period begins/ends. This
means that the consumer has no ability to turn the heater on, only to set
the desired temperature setting. In this example the control variables
are binary - the heaters are on or off, but for centralised smart charging
the speed as well as the timing of charging can be determined. The
charging profile is no longer CC-CV, but decided entirely by the con-
troller. Consumers can only choose when they plug in their vehicle, and
a deadline by which they need it charged. In this case optimality can be
guaranteed, and the problem can often be solved using existing, well-
known formulations (e.g. (Sortomme et al., 2011)).

One drawback is that these schemes do not scale very well, with a
large number of vehicles it becomes difficult first to gather all of the
information then to calculate the optimal profiles. The complexity can
be limited by instead grouping vehicles (e.g. by location) and locally
optimising their charging. In this case the agent in charge of the group
of vehicles is referred to as an aggregator. Another problem is that these
schemes rely on reliable communication infrastructure between each
vehicle and the controller, which from a policy perspective makes them
more difficult to implement.

Decentralised schemes are applied by the individual vehicles rather
than a controller, which limits the size of the individual problems being
carried out. Again the shape of charging profiles is variable, and the
user can only decide the amount of time their vehicle is plugged in.
Data security issues are avoided, as consumers preference information
does not need to be transmitted.

In general a price signal is broadcast to vehicles, which then propose
a charging schedule on the basis of which the price is updated. This
process is repeated until the profiles converge to an optimum, an ex-
ample formulation is found in Gan et al. (2013). The main problem is
that this process requires an even more extensive communication net-
work, and controllers to be installed into every vehicle or charging
station.

3. Methodology

There are several steps involved in predicting the impact of a large
fleet of EVs in the UK. First the level of vehicle use must be predicted,
which requires analysis of data on how people currently travel.
Implicitly this assumes that electrification will not affect the way people
use vehicles. Once the journeys carried out has been predicted, the
energy which the vehicles will use completing them must be estimated.
For this a model is required which describes the way EVs use electricity.
Finally we need to consider when people are likely to charge in order to
calculate the demand profile. This requires formulating a set of as-
sumptions about the way people will charge their vehicles.

Once all of this has been done, consideration into how the charging
profile can be altered without inconveniencing consumers can begin.

3.1. Travel data

The National Travel Survey is a piece of research conducted an-
nually by the Department for Transport which aims to understand how
people in the UK travel (Lepanjuuri et al., 2016). Households are se-
lected at random and asked to document all of their journeys for the
week, recording (among other things) their day, time, distance, length,
purpose and mode of transport. Regional and demographic data for the

participating households is also collected. Diaries from 91, 755 house-
holds owning at least one vehicle are available, comprising a total of
1, 862, 168 trips. Using the vehicleID variable it is possible to extract
week long journey profiles of the vehicles in the data set.

Here we created a journey set representative of the UK fleet by
filtering the data set for relevant journeys (carried out by car and on the
chosen day of the week). The number of people represented by the
remaining data is then calculated and their percentage of the UK po-
pulation is determined. This number dictates the required scale factor -
or the number of predicted journeys each journey in the data set re-
presents. It was decided to scale by population rather than number of
vehicles because it is the journeys completed, rather than the number of
vehicles carrying them out, which determines energy consumption.

3.2. Electricity use prediction

Some studies have been done, investigating the use and electricity
consumption of EV users (e.g. (Davis, 2016)) however, the small scale
of these studies makes it unwise to extrapolate the behaviour to a fleet
the size of the UK. Instead, a vehicle model was formulated to convert
the length, number of passengers and rural-urban classification of a
journey into an energy consumption.

The model uses a standard drive cycle representative of European
driving behaviour (proposed by (Andrè, 2004)) and calculates the force
required to move the vehicle at every time-step. Coast-down coeffi-
cients are used to estimate the resistive force (White and Korst, 1972),
which is the force the vehicle is required to overcome. The total force
required is then the sum of the resistive force and the force needed to
accelerate the vehicle. This is calculated at each time-step and con-
verted into a power demand, full details of the model are given in
Crozier et al. (2017).

3.3. Charging Demand Prediction

In order to convert the energy demands of vehicles in the test data
into a grid electricity demand assumptions about charging need to be
made. The first decision to be made was the power at which vehicles
would charge. Slow charging would have the smallest impact on the
grid, but would require vehicles to be available for large periods of
time. If most charging is done at public charging points, faster charging
will be required.

To determine the most reasonable assumptions the location of the
vehicles throughout the day, which can be inferred from the recorded
purpose of journeys, was examined. Fig. 2 shows the percentage of the
fleet parked at each of the most common three locations throughout the
day. The x-axis is offset so that the day begins at 8 a.m., this is because
we assume that all vehicles need to be charged by the next morning,
and so at the start of the day all vehicles are assumed fully charged and
must be again before the end of the day. This day set up is assumed for
the rest of this paper.

The most common location for vehicles is at their home - with at
least half the fleet being there at any one time. This suggests that the
most convenient scenario would be for every one to charge at home,
using domestic slow chargers. This agrees with existing research;
(Morrissey et al., 2016) state that EV users prefer to charge at home in
the evening, and Farhar et al. (2016) claim that in order to be suc-
cessful, charging systems must be unobtrusive and require little of
consumers. Also, an initial study of EV users reported that over 71% of
vehicles charged exactly once each day (Quiros-Tortos et al., 2015).

At home slow charging is therefore assumed for the rest of this
study. This is not without complications; (National Grid, 2017a) esti-
mates that 43% of vehicles do not have access to off street parking, so
installing private chargers may be challenging.

Given this location constraint, the times when a vehicle will charge
can be predicted. To quantify the impact of uncontrolled charging it is
assumed that if a vehicle has used less than its battery in the day:
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• It will plug in when it arrives home after its final journey of the day

• It will charge until either full or it is first needed the next day,

and if not:

• It will charge whenever it is at home

• If this is still not sufficient to be fully charged at the end of the
simulation it will ‘rapid charge’ whenever parked for more than
30mins.

This latter step is important because if not all of the vehicles in the
simulation receive sufficient charge, then the simulation will under-
estimate power required.

3.4. Optimal smart charging

It is important to quantify the potential of smart charging, to find
out what the best we can do is under the chosen assumptions. For this
reason an optimization problem was set up which takes into account the
availability of the vehicles in the test set.

As previously stated, our goal is to avoid increases in national peak
power demand. When optimising charging profiles, the amount of en-
ergy being demanded from the grid is constant, so the peak power is
minimised when the overall demand profile is as flat as possible. This
leads to the popular valley-filling schemes (e.g. (Chen et al., 2014)),
which aim to charge vehicles in the troughs of the base demand profile.

An optimization program was formulated, which calculates the
optimal charge profiles for each individual vehicle in the data set such
that the aggregated demand profile is as flat as possible. It was assumed
that each vehicle would be available to charge any time from the end of
its last journey until the start of its first the next morning. Charge
profiles were discretised into hour windows, meaning that a vehicle
could only change its charging power once an hour. This had to be done
in order to keep down the computational complexity of the problem.
The resulting problem is formulated as a Quadratic Programming pro-
blem (e.g. (Gill and Wong, 2015)), and can therefore be solved using
standard solver packages.

3.5. Approximate smart charging

There are many reasons why the optimal profiles described in the

previous section could not be implemented in practice. Along side the
typical problems with centralised control schemes, the controller re-
quires future knowledge of all vehicles plans - even before they arrive at
the charging point. Perfect knowledge of the electricity base load is also
required, although this is already forecasted extensively with good ac-
curacy (Taylor et al., 2006).

Here we propose a simple algorithm which could be applied in-
dividually by vehicles in order to achieve approximate valley-filling at
the national level, and is readily applicable. As the constraints of the
majority of vehicles will be similar (arriving home in the evening,
needed by the next morning) many of the optimal charging profiles are
likely to be roughly the same. Given this, it follows that a reasonable
approximation can be made to the optimal solution by defining a
standard shape of charging profile which vehicles can implement. The
proposed algorithm is described below:

1. Predict the National base load
2. Invert prediction by subtracting each time step from the maximum

value
3. Isolate the period during which the vehicle is available to charge

and calculate the energy (area under curve) of the resulting signal
4. Scale the signal to the required energy

In the first stage the shape of the National demand profile for the
next day without EV charging is estimated. Variation in the signal is
largely dependant on time of year, and whether or not it is a weekend -
neither of which need predicting. Therefore, a small number of fixed
profiles could be stored from which the controller can select the most
relevant.

Next the inverse of this signal is calculated, this represents the shape
which aggregated vehicle charging should fill in order to achieve a
completely flat demand profile. The vehicle is unlikely to be able to
charge for the entire range so the signal is cut down to the times the
vehicle is available. Finally the profile is scaled so that the right amount
of energy will be received, meaning the EV will finish charging just as it
is next needed. These stages are demonstrated in Fig. 3.

It is impossible for this algorithm to achieve optimality as all EVs
would need to be plugged in for 24 h a day, meaning they couldn't
actually consume energy. However, by taking a simple additional step
we can ensure that this cannot be worse than the uncontrolled case. A
limit on the individual power that a vehicle can charge at is set at the
rate of slow charging (3 kW). This means that if a user plugs in their
vehicle saying they need it again in an hour it will not fully charge, but
charge at 3 kW for the duration of time it is plugged in. This is the same
as the uncontrolled charging situation so in the (extremely unlikely)
case that all users plugged in their vehicles will short deadlines the
algorithm would have no effect.

4. Results and discussion

This section first discusses the results of the simulation of un-
controlled and optimally controlled charging for a single simulation.
Then the approximate scheme is tested and sample individual vehicle
profiles are examined to highlight the differences. Finally the variation
of the simulation with time of year is explored.

Initially the simulation was run for a Wednesday in January. The
day was chosen so that the simulation would represent the average
weekday and the month because it is the one which typically experi-
ences the largest peak power demand, and is therefore likely to re-
present the worst-case. All of the journeys carried out on a Wednesday
in January were extracted from the travel survey, and their energy
requirement predicted using the method outlined in Section 3.2. These
were then scaled to represent a population the size of the UK and the
uncontrolled and optimal charging profiles were calculated according
to Sections 3.3 and 3.4 respectively.

Fig. 4 shows the predicted National demand profile with

Fig. 2. The percentage of the UK fleet parked at home, work and the shops
throughout the day (on a weekday).
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uncontrolled and optimal charging of an 100% electric fleet, compared
with the current profile. This suggests that uncontrolled charging could
require an extra 20 GW of power generation capacity to be installed,
which represents an increase of about 1/3. This is largely due to the
coincidence of the evening domestic electricity peak and the vehicles
plugging in, which makes sense as they are both caused by people ar-
riving home in the evening. The assumptions that people charge every
day and only once they have finished using their car for the day may
exaggerate this peak, but there is currently nothing to suggest these
assumptions are unreasonable.

In contrast, the optimal case shows no increase in the peak demand.

While the same amount of additional electricity will need to be gen-
erated, distributing in out in time means that no additional generators
will be required - the existing ones will just have to operate more
throughout the day.

Next the approximate algorithm proposed in Section 3.4 was com-
pared to the optimal solution, the results are shown in Fig. 5. While
there is clearly some difference between the profiles the approximate
does not result in an increase in the peak load, which is the most im-
portant point. The differences between the profiles are easy to under-
stand; in the optimization problem when vehicles plugged in earlier in
the day the controller knew that there were very few vehicles available
at that time so they were charged quickly, however in the approximate
when a vehicle arrives home early it has no way of knowing the number

Fig. 3. Demonstration of example curves obtained from each stage in the process described in Section 3.4.

Fig. 4. Predicted effect of a 100% electric fleet on the UK energy profile in both
the uncontrolled and optimally controlled cases.

Fig. 5. The difference in performance between the optimal and the approxi-
mately optimal charging schemes.
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of other vehicles available to charge.
Further insight can be gained by looking at examples of the in-

dividual profiles which are shown in Fig. 6. In the uncontrolled case
vehicles charge at full power until they reach 80% capacity when the
power level begins exponentially decreasing, while in both the optimal
and approximate case charging is slower and predominantly overnight.
Perhaps the most obvious difference between the optimal and approx-
imate profiles is the resolution (as the optimal profiles are limited to
hourly changes), but the more important difference is demonstrated in
the bottom two examples. Here the vehicle arrives home before the
evening peak in electricity. While the approximation holds off on
charging until the evening trough, the optimal profile charges quickly
for the first hour as it knows it is one of the only vehicles available to
charge at that time.

Thus far all of the simulation results have been for a January, but it
is important to also consider how the results of these methods change
throughout the year. The base demand profile changes significantly
throughout the year, increasing in the colder months due to heating
requirements. This will change the shape of the charging profiles as the
overnight trough in the demand profile contains a smaller amount of
energy. The results of the uncontrolled, optimal and approximate
charging regimes for different times of year are displayed in Fig. 7.

This shows that when the base demand for electricity is relatively

Fig. 6. Examples of the individual profiles predicted under all three charging
schemes.

Fig. 7. The seasonal variation in the charging demand of a 100% electric fleet, under uncontrolled optimal and approximate charging schemes.

Table 3
The percentage increase in electricity demand due to vehicle charging
throughout the year.

Month Fleet energy requirements
(GWh)

Difference from existing
demand

January 202.32 +20.76%
April 192.53 +24.05%
July 171.00 +24.41%
October 183.12 +21.97%
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high, and the overnight trough deep, the approximation performs well.
However, in the summer months the error between the approximate
and optimal solutions increases noticeably. This is because in the winter
months optimal charging occurs almost entirely within the valley, while
in summer months the valley doesn't contain enough energy for this. In
the optimal cases vehicles arriving early are charged quickly whereas in
the approximation they are not. It is possible that incorporating a
weighting into the algorithm which priorities charging at unpopular
times could improve performance. However, it then becomes harder to
prove that the algorithm will always be an improvement and the im-
portance of getting such a weighting right is high.

The energy required by the fleet in each simulation is expressed in
Table 3, where both the actual energy and the percentage increase that
it represents are shown. This shows the largest predicted energy re-
quirement in the winter, largely due to heater use. However, as the
electricity demand is already highest at this time of year the biggest
percentage rise occurs in the summer, where almost a quarter more
energy will be required. These predictions sit somewhere between those
made by National Grid (2017b) and Andrews (2016).

The predicted peak demand under all three schemes for each si-
mulation is displayed in Table 4. This shows that the approximate al-
gorithm achieves a very low error in the winter months, but around an
almost 20% error in the summer months.

The case could be made that it is the performance in the winter
months which is more important, as this is when the UK is operating
close to its capacity limit; in all simulations the peak of the approximate
algorithm is below the current National generation limit. Whereas, in
the uncontrolled case all months show an peak increase of at least
20 GW.

5. Conclusion and policy implications

As the number of EVs on the road increase, the risk of allowing the
uncontrolled charging of vehicles grows. If the UK fleet goes all electric
then around an extra 20 GW of power generation capacity would be
required. Additionally, the increased load will require network re-
furbishments and the volatility of the vehicle charging could create
supply/demand balancing problems.

Here we have shown that by controlling charging the increase in
power demand can be avoided, and have proposed an approximately
optimal charging scheme which achieves between a 80 and 99% re-
duction in the projected increase of the peak. In the winter months,
when the UK is closest its capacity limits, the performance is strongest.

There are several policy implications suggested from the findings in
this paper. Firstly, on the implications of not controlling charging. If the
UK fleet becomes entirely electric, driving behaviour doesn't change
and people charge as they do now, the simulation suggests an extra
20 GW of generation capacity will be required. This would require
substantial investment and would likely result in a rise in the price of
electricity.

Secondly, optimal control of charging profiles can completely mi-
tigate this impact, by completing the charging in the existing trough in
electricity demand. However this would be very difficult to achieve in
practice, as it would require precise prediction of all vehicle's future
charging requirements, and the problem is computationally difficult.

Thirdly, there is an approximately optimal method which appears to

mostly mitigate the increase in peak demand in the higher use months,
and is implementable using existing infrastructure. Customers need
only enter the time they need their vehicle by, and the controller would
implement a scaled version of one of a handful of profiles.

Finally, this method can be achieved without impacting consumers
use at all; charging occurs when the vehicle is parked at home and is
finished by the time the vehicle is next needed. It could be argued that,
since the consumer suffers no inconvenience, participation in such a
scheme could be enforced by policy. In such a scenario, users would set
a charging deadline when plugging in their vehicle and have no further
control over their vehicle charging. A default deadline (e.g. 6 a.m.)
could be used in the case one is not given. Consumers already have little
control over their vehicle's charging profile, chargers follow a CC-CV
profile which slows charging once 80% SOC is achieved.

Users setting unnecessarily early deadlines would reduce the ef-
fectiveness of the system, but there would be a reduction in the peak
demand approximately proportional to the number of smart charging
vehicles. For example, if 50% of vehicles adopted this strategy then the
increase in peak demand will be only half what it would have been. If
instead the system is opt-in then vehicles must be rewarded according
to the amount of flexibility they provide, i.e. there must be an incentive
to put as late a deadline as possible. In this case, the pricing and ad-
vertising of the strategy would be paramount to its success.
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