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Price Perturbations for Privacy Preserving Demand
Response with Distribution Network Awareness

Constance Crozier, Aisling Pigott, and Kyri Baker

Abstract—Demand response (DR), where electricity consump-
tion is shifted in response to incentive signals, can ease the
transition to renewable generation. However, when many devices
simultaneously respond to these signals there is the potential
for violating local network constraints. Many of the proposed
solutions require consumers to hand over control of their devices
to third-parties. Here, we propose a method of using price
distortions to coordinate distributed resources, which is both
robust to local constraints and privacy preserving. We formulate
the price distortion setting problem as a mixed-integer linear
programming problem. Conditions are derived under which the
method can guarantee constraint violations are eliminated within
one time step. The method was tested using case studies involving
both electric vehicles and smart heating/cooling systems. We show
that the proposed method, under a scenario with maximum DR
participation, can achieve 98% of the theoretical lower bound on
the number of constraint violations. Furthermore, our method
out-performs the benchmark where some devices opt-out of DR.

NOMENCLATURE

Parameters
κ Penalty of network constraint violation ($/kW)
λ Transmission-level real-time price ($/kWh)
∆t The size of one time step (hrs)
η The efficiency of a device (%)
Θ The safe power limit of the network (kW)
τ The deadline by which a load must be met
C Thermal capacitance of building (J/K)
d The total inflexible demand at a bus (kW)
E The energy requirement of a device (kWh)
I Global horizontal irradiance (W/m2)
k Effective window area of building (m2)
M A large number which exceeds other parameters
Nt The number of steps considered in the horizon
p The power a device draws when on (kW)
R Thermal resistance of building (W/K)
Tmax The maximum acceptable temperature (◦C)
Tmin The minimum acceptable temperature (◦C)
T out The temperature outside (◦C)

Variables
σ Violation of a distribution network constraint
ξ Distribution price adjustment ($)
c The price below which a device will turn on ($)
T The internal temperature of a building (◦C)
x Binary variable indicating device on/off status

C. Crozier is with the School of Industrial & Systems Engineering, Georgia
Institute of Technology. A. Pigott, and K. Baker are with the Dept of Civil,
Environmental & Architectural Engineering, University of Colorado Boulder.

Sets
Ji The set of devices connected to bus i
JT The set of thermal devices
JD The set of deadline driven devices
JU The set of uninterruptible devices
Sxfm The set of transformer thermal constraints
Sv The set of voltage constraints
Sb The set of branch thermal constraints

Notation
(i) At distribution bus i
(j) From smart device j or its associated building
(s) Relating to distribution constraint s
ˆ Estimate of the quantity
t At time step t

I. INTRODUCTION

DEMAND response (DR) broadly refers to altering power
demand to achieve economic or grid-level goals. This is

distinct from historic operation of the power grid, which has
focused on altering power supply to match demand. Renewable
generation presents increasing challenges for transmission
system operators (TSOs), as they need to cope with greater
uncertainty on the supply-side. The proliferation of devices
such as electric vehicles (EVs) and smart thermostats in
distribution networks has resulted in a large amount of latent
flexibility being present at the low voltage level [1]. This
presents an opportunity to improve the operation of the power
system, without incurring additional infrastructure cost [2].

Dynamic pricing schemes are in early stage deployment,
where dynamic tariffs (which represent the TSO system-wide
cost) are passed down to consumers (e.g. [3]). These schemes
incentivize consumers to align their demand with times of
surplus renewable generation. However, real-world trials have
shown that sending homogeneous prices to large number of
flexible devices can increase local peak demand – creating
problems for the distribution network [4]. Shifting demand
to improve the TSO operation, while coordinating devices
to prevent distribution system constraint violations is often
termed the TSO-DSO coordination problem [5].

There has been some academic appetite for dynamic elec-
tricity prices which also reflect local distribution system op-
eration (e.g. [6]). However, there are ethical and technical
concerns with such an approach, and thus far no utility has
successfully deployed spatially varying prices [7]. Instead,
most previous works addressing this issue seek to include
distribution system operation in the optimization constraints.
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Some works have re-framed the economic dispatch problem to
consider co-optimization of the transmission and distribution
problems; e.g. including distributed solar generation [8], EV
chargers [9], or management of battery storage systems [10].
However, these assume a centralized control structure which
is unlikely to scale to millions of devices. A common method
for reducing the complexity of the problem, is to use third-
parties (often called aggregators) to interface with the TSO
(e.g. [11]). Aggregators can co-ordinate devices and interface
directly with the TSO, however additional controls may be
necessary to ensure that distribution constraints are protected
(e.g [12]). Additionally, passing control of their devices to a
third-party aggregator requires transmission of sensitive infor-
mation, which may threaten consumer privacy [13]. Although
encryption methods can be used to protect consumer privacy
(e.g. [14], [15]), these incurs additional costs. Furthermore, in
order to anonymize individual devices, the exact position of
the device in the network must be occluded. This means that
robustness to some constraints can not be guaranteed (such as
local voltage and branch loading).

Other works have investigated decentralized methods for
DR, for example using the alternating direction method of
multipliers [16], gradient projection [17], or the water-filling
algorithm [18]. These decentralized formulations mean that
device requirements are kept private, however they still require
forecast consumption to be broadcast and can take many
iterations to converge. Others proposed methods utilize cryp-
tography to preserve privacy; for example, using differential
privacy [19] or aggregation methods [20] such that patterns in
the dataset are shared without disclosing individual consumer
data. In [21] the authors propose a method where the utility
receives a recommendation of consumers to elicit demand
response from, that guarantees differential privacy. It is un-
likely privacy would be maintained if the locations were also
provided. In [22] a privacy-preserving consensus algorithm is
developed where nodes send projected states (protecting the
privacy of their initial position) to neighbours. However, this
involves bi-lateral communication so can be slow to converge.

An alternative approach is for the controller to use inference
from previous behavior to estimate the behaviour of devices
in response to price signals. In [23] reinforcement learning
is used to learn the optimal incentive strategy based on con-
sumers previous response to price signals. This paper did not
investigate the inclusion of distribution network constraints,
however reinforcement learning has been shown in other
cases to be effective at improving distribution system opera-
tion [24]. The limitation of using a model-free approach, such
as reinforcement learning, is that there can be no robustness
guarantee – we have no assurance that the constraints will be
met where possible. In [25] the authors propose a strategy for
the control of A/C units which does not require the operator
to know the outputs of the individual units. Instead the units
provide only velocity signals (signifying their rate of change
of output in response to price), which gives a proxy for
the distance of the unit from its comfort bound. Although
effective, this approach only works with a single device-type.

In this paper, we propose a distributed method for DR
which requires devices to only share current consumption –

visualized in Fig. 1 (c). In this method, a local operator applies
perturbations to the TSO price signals with the objective of
avoiding local network constraint violations. This avoids both
the local constraint violations of the top down method (a)
and the privacy issues with the aggregator model in (b). Fur-
thermore, our solution adopts a minimum hardware approach
by removing additional market players and communication
infrastructure. This is highly desirable from the consumers’
perspective, because additional players and hardware come
at a financial cost, which is ultimately passed on to the
consumer [26]. Our proposed method allows diversity in
consumer preference, and remains effective even when many
consumers opt-out of flexibility provision.

Fig. 1: Three architectures for exploiting distribution level
resources for transmission level goals. (a) top-down: where
TSO level price signals are passed straight to smart devices,
(b) direct control: where a local aggregator takes control of
the smart devices, (c) proposed method: where a local operator
adjusts the TSO price signals in response to local observations.

The contributions of the paper can be summarized as fol-
lows. First, that we propose a method of DR that is distribution
network aware and does not require iterative convergence.
Second, that our method is privacy-preserving, meaning that
users are not required to transmit their requirements or pro-
posed energy consumption. Third, that the method does not
require a 100% participation rate, meaning it is still effective
even when some devices opt out of DR. Finally, that we
release our simulation platform as open access – allowing
other researchers to repeat our results and test similar methods.

II. PROBLEM FORMULATION

A. Control Architecture

The proposed control scheme involves altering the trans-
mission level price signals so as to avoid synchronization of
local devices. We assume that the distribution system operator
(DSO) defines these perturbations to the transmission system
price. This concept is illustrated in an example network in Fig.
2. The locational marginal price (LMP), λ, is passed down
from the transmission network and a number of smart devices
j are connected via nodes i. Although we describe λ as an
LMP in this manuscript, this approach would generalize to any
flexibility service with a transmission level price, e.g. ancillary
services. While DSOs have historically been predominately
focused on network repairs, participation in real-time operation
is becoming more common (e.g [3]).
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The DSO defines the perturbations ξ (which can be positive
and negative) that are used to diversify the price signal sent
to each node. We consider two possible options in terms of
implementation. The first option is that the consumer will pay
the real time price signal λ + ξ, such that the perturbations
influence the actual cost of their electricity. Previous works
have suggested that such distribution system varying price
signals can increase the economic efficiency of electricity
supply [27] – particularly with large loads like EVs [28].
However, there are equity concerns that arise when sending
local consumers different price signals, and in practice no
utility has successfully implemented such as scheme [7]. The
second option is that the price perturbations do not influence
the price that the consumer pays – they still pay λ for their
energy use. The DSO will design the price adders to minimize
the cost the consumers pay using λ, hence saving consumers
money and maximizing the exploited flexibility. This may be
more practically implementable for regulatory reasons, but it
may be challenging to incentivize consumer participation.

Fig. 2: An example network. Multiple low voltage nodes are
connected to a transformer. All devices receive the price λ
plus an additional offset ξ which is specific to their node.

In terms of communication, we assume that the DSO
broadcasts the nodal price adders to devices, and that devices
only share their current consumption. Importantly, the device
requirements and intended consumption profiles are not shared
with the DSO. Current consumption need not be commu-
nicated directly through the device, but rather through sub-
metering at the smart meter level. An interesting further direc-
tion would be investigating whether the aggregate household
consumption would be sufficient. It is worth noting that there
are methods of load coordination which do not require this
level of information. For example, using aggregated consumer
data [29], however this approach can not include awareness of
the distribution network. Alternatively, some use cryptography
methods to preserve differential privacy (e.g. [15])) – but
these methods still require device communication. Figure 3
shows an example communication between a newly activated
device and the DSO controller. Iterations are not required, so
this method represents a significantly reduced computational
burden compared to existing approaches (e.g. [30]). Given
that the DSO considers devices on a single circuit, scalability
should not be a concern, but this will be explored further.

B. Devices

Here we consider a smart device j to be a single-speed
device whose demand is delayable. Devices are defined by
their power rating p(j) and efficiency η(j). We use the binary
variable to x

(j)
t to denote whether the device is drawing power

Fig. 3: The communication process when a device is activated.

at time t (a value of one implies that it is). Our formulation
works for any smart devices which have communication
abilities and can delay load. Many flexible loads already have
this functionality, although it is worth noting that for smaller
devices (e.g. charging of mobile phones) this functionality
may be cost-prohibitive. We distinguish several categories of
device, which have different constraints.

1) Thermal devices: These are electrical temperature con-
trols – e.g. air conditioning units, heat pumps, and resistive
heaters. These have inherent flexibility because consumers
typically have a range of building temperatures which they
find acceptable, and buildings have natural thermal storage.
In this case the flexibility of the device is determined by its
temperature bounds T

(j)
min, T

(j)
max; consumers can opt out of

flexibility by setting an extremely narrow bound for acceptable
temperature. Note that shifting thermal load will increase the
total required energy, due to the thermal leakage [31].

2) Deadline devices: These are devices whose total energy
consumption E(j) does not change when load is shifted
forwards or backwards. Instead the flexibility of these devices
are governed by a deadline τ (j), the time by which they need
to have been completed. A common example of a deadline
device would be an EV charger.

3) Uninterruptible devices: These are a subset of deadline
devices for which, once the device has turned on, the process
must complete without interruption. This means that the flex-
ibility is only in the start time – once the device has begun
drawing power it has no more flexibility. An example is a
dishwasher or washing machine with a delayed start.

C. User Interface

Previous research has indicated that simple choices for con-
sumers elicits the optimal participation in DR programs [32].
Therefore, we have chosen the simplest possible user interface
and input parameters. For thermal devices, consumers set the
temperature bounds they are comfortable with. For deadline
oriented devices, consumers set their deadline (the device will
automatically communicate energy consumption).

In terms of DR scheme consumers have two or three
options. For deadline-driven devices the consumer can choose:
(1) to consume economically before a set deadline, (2) to
consume immediately, or (3) to consume below a certain price.
The second option allows consumers to opt out of DR, e.g.
if their deadline is uncertain. The final option is for when the
consumer does not necessarily need the energy by a deadline,
but will consume power if the price falls extremely low (or
negative). For thermal devices, there will be two options: (1)
consuming economically, and (2) default consumption, which
will minimize the total energy consumption of the device.
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III. CONTROL ALGORITHMS

Our proposed method involves two separate controllers –
the device-level control which alters the device consumption
in response to the incentive signal, and the DSO-level con-
trol which designs the price perturbations. We also define a
benchmark case where an aggregator directly controls devices.

A. Model Predictive Controller

For devices j where the user has selected the economy
setting, a local controller will need to optimize the device
consumption. Here we assume that these devices will use
model predictive control (MPC) to minimize their energy cost
given the forecast set of prices. We define the forecast cost of
device j’s energy consumption as:

f (j)(x) = p(j)∆t

∑
t

(λ̂t + ξ̂
(i)
t ) x

(j)
t , (1)

where x
(j)
t is a binary variable determining whether device j is

consuming power at time t, p(j) is the device’s grid-side power
rating, ∆t is the time step size, λ̂ are the forecast transmission
prices, and ξ̂ are the forecast price adders. For deadline driven
devices, the power profile must satisfy the energy constraint:

p η(j) ∆t

τ(j)∑
t=0

x
(j)
t ≥ E(j) , (2)

where η(j) is the efficiency of device j (given that p is defined
from the grid-side), τ (j) is the device’s deadline, and E(j) is
the total energy requirement. We use a greater than (rather
than an equality constraint) because x are binary variables, so
there is likely not a feasible solution to the equality constraint.
Note that if bi-directional power flow is considered (such as
with vehicle-to-grid chargers) then we need to define separate
binary variables for charging and discharging and include an
additional constraint on state-of-charge. For uninterruptible
devices, we include the additional constraint:

x
(j)
t ≥ xt−1 −

1

E(j)
p(j)∆tη

(j)
t−1∑
m=0

xm , (3)

where the far right term gives the percentage of the required
energy that has been met. Given that x are binary variables,
this enforces that if xt = 1 then subsequent xt must be
equal to one until the energy demand has been met. Thermal
devices have different constraints, as they are governed by the
buildings thermal properties. Here we use a linear RC model to
determine to determine the building temperature change that
results from electrical heating or cooling. These models are
commonly used for this application (e.g. [33]). Specifically,
we take our model and parameters from [34]. Therefore, we
impose variables T for building temperature, which are linked
in time by the following equation:

T
(j)
t+1 − T

(j)
t =

(T out
t − T

(j)
t

R(j)C(j)
+

k(j)

C(j)
It

− η(j)

C(j)
x
(j)
t p(j)103

)
3600∆t ,

(4)

where R(j) is building thermal resistance, C(j) is the building
thermal capacitance, T out is the outdoor temperature, k(j)

is the effective window area, and I is the global horizontal
irradiance. The factors of 103 and 3600 are used to convert kW
to W and /s to /hr respectively. Note that here η(j) will capture
the conversion from electric to thermal power as well as any
losses. In this case, given the short time horizon considered,
we assume the outdoor temperature forecast to be known. The
flexibility of the device is then given by:

T
(j)
min ≤ T

(j)
t ≤ T (j)

max , (5)

where T
(j)
min, T

(j)
max are the minimum and maximum allowable

building temperature for device j.

B. DSO controller

In contrast to the devices, the DSO controller is able to
affect the prices, but has only estimates of device requirements.
Additionally, we assume that the controller has no knowledge
of future activating devices, so the controller must adapt
to new devices as they are activated. This is particularly
challenging for deadline-driven devices, which can add large
loads unexpectedly. We assume that the controller knows the
inherent properties of the device, such as its type, efficiency,
and power rating. Given that the DSO can not dictate the
device actions, we need a way of incorporating the price-
sensitivity of loads. In order to maintain a linear formulation,
we first define a new variable c(j), which is price signal below
which the controller expects device j will consume power.
Remark 1. For deadline-driven devices j there will be a price
signal c(j) below which the device will be on and above which
the device will be off.

To see this, first consider that if we constrain the sum of a set
of binary variables to be n and minimize a linear combination
of them, the lowest cost n variables will be 1 and the remainder
will be 0. This is analogous to devices optimizing their
on/off behavior in response to a price signal. For devices
selecting the ‘consume immediately’ option or uninterruptible
devices which have already started c(j) → ∞. For devices
selecting the ‘consume below a certain price’ option there
will be a fixed value of c which does not vary with time.
For other devices the value of c(j) will be constantly updated,
according to the urgency of the device’s constraints. However,
the controller can gain some insight into price sensitivity by
observing choices in the previous time step. Thermal devices
are more complicated, given that the total energy consumed
will increase if consumption is bought forward.
Remark 2. For thermal devices j there will be a price αtc

(j)

below which the device will be on and above which off.
Here we have introduced a factor αt which will inflate

earlier costs to account for the additional energy consumption
caused by bringing forward heating or cooling. We assume:

αt = 1 +
T out
t − T̂

(j)
max

R(j)η(j)
10−3∆t(Nt − t) (6)

for cooling devices, and (T̂
(j)
min − T out

t ) as the numerator
for heating devices. This approximation is derived in the
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Appendix. Therefore, considering a time horizon of Nt time
steps of ∆t, we formulate our DSO objective as:

f(.) =

Nt∑
t

(
λt

∑
j

x̂
(j)
t p(j) +

∑
s

κ(s)σ
(s)
t

)
+
∑
j

c(j) (7)

where λt represents the transmission system price signal at
time t, x̂(j)

t is an estimate of j’s charging profile. Therefore,
this first term represents the estimated device energy cost using
the transmission level pricing. The variable σ

(s)
t is a slack

variable describing the violation of the distribution constraint s
at time t and κ(s) is a parameter describing the cost of violating
that constraint. Therefore, this second term represents the
penalty for violating the distribution system constraints. It is
assumed that κ ≫ λ, such that the optimization will prioritize
minimizing constraint violations, and then maximizing the
TSO response. Lastly, c(j) represents the maximum cost at
which j will consume power, enforcing that consumers will
individually act to minimize their cost. This final term does not
need to be weighted, because there is no direct link between
this and the other two terms, so the there is no trade-off.

The control variables to be chosen are the DSO price adders
ξ
(i)
t , which dictate the addition to the transmission price which

devices at bus i receives at time t – such that devices at that
bus will receive signal λt+ξ

(i)
t . However, the formulation also

includes decision variables for: estimates of device behaviors
x̂, estimates of the threshold costs c, and estimates for the
building temperatures T̂ .

The constraints of the problem are as follows:∑
t

ξ
(i)
t = 0 ∀i (8a)

(λt + ξ
(j)
t ) ≤ α

(j)
t c(j) +M(1− x̂

(j)
t ) ∀j, t (8b)

α
(j)
t c(j) ≤ (λt + ξ

(j)
t ) +Mx̂

(j)
t ∀j, t < τ̂ (j) (8c)

α
(j)
t − 1 = 0 ∀t, j ∈ JD (8d)

α
(j)
t − 1 =

T̂
(j)
min − T out

t

R(j)η(j)
10−3τt ∀t, j ∈ JT (8e)

x̂
(j)
0 = x

(j)
0 ∀j (8f)

T̂
(j)
t+1 − T̂

(j)
t =

(T out
t − T̂

(j)
t

R(j)C(j)
+

k(j)

C(j)
It

− η(j)

C(j)
x̂
(j)
t p(j)103

)
3600∆t

(8g)

T̂
(j)
min ≤ T̂

(j)
t ≤ T̂ (j)

max ∀t, j ∈ JT (8h)∑
t

x̂
(j)
t p(j)∆t ≥

1

η(j)
Ê(j) ∀j ∈ JD (8i)

x̂
(j)
t = 0 ∀j ∈ JD, t > τ̂ (j) (8j)

x̂
(j)
t+1 − x̂

(j)
t ≥ −

t∑
m=0

x̂mp(j)∆tη
(j)

Ê(j)
∀t, j ∈ JU (8k)

σ
(s)
t ≥ 0 ∀s, t (8l)

where we use JD,JT ,JU to denote the set of devices which
are deadline driven, thermal, and uninterruptible respectively.
The set Ji defines the devices which are connected to bus i.
Constraint (8a) enforces that the price adders on bus i over

the time horizon must sum to zero. This achieves fairness
between devices on the network, because the adders must have
zero bias at all locations – this prevents some areas on the
network from receiving greater DSO intervention than others.
Constraint (8b) and (8c) enforce the definition of c(j) through
the big M formulation [35] – where M is some large number
much greater than αtc, these constraints are equivalent to:

x
(j)
t = 1 if λt + ξ

(i)
t α

(j)
t ≤ c(j)

x
(j)
t = 0 otherwise .

(9)

Constraints (8d) and (8e) enforce the definition of the in-
flation factor α

(j)
t – ensuring that it is unity for deadline-

driven devices, and the loss-compensated factor previously
discussed for thermal devices. Here we have used the variable
τt = ∆t(Nt − t) to denote the amount of time that will pass
between time step t and the end of the horizon. Note that
(8e) assumes a heating device, if the device is cooling T̂min

should be replaced with T̂max. Constraint (8f) includes the
observation of the current state of the device. This provides
the controller with some information about c(j); if the device
is currently consuming power we know that c(j) ≤ λ0 + ξ

(i)
0 .

Constraints (8g) and (8h) enforce the behavior of thermal
devices; where the controller is working with estimates of the
building temperatures and preferences. Constraint (8i) enforces
the behavior of deadline-driven devices, although again with
estimates of the energy requirements. The estimated deadline
of the device is enforced by (8j), where the consumption of
the device is set to zero after the estimated device deadline.
Finally, constraint (8k) enforces the behavior of uninterruptible
devices.

The constraints of the distribution system are captured
through slack variables σ

(s)
t which are defined as follows:∑

j

x̂
(j)
t p(j) ≤ Θ+ σs

t −
∑
i

d
(i)
t ∀t, s ∈ Sxfm (10a)

−b
(i) − σs

t ≤ F[i,:](x̂p+ d) ≤ b
(i)

+ σs
t ∀t, s ∈ Sb (10b)

v − σs
t ≤ M[i,:](x̂p+ d) ≤ v + σs

t ∀t, s ∈ Sv (10c)

where we used the notation Sxfm,Sbr,Sv to define the of
distribution constraints s which are related to transformers,
branch limits, and voltage bounds respectively. Transformer
constraints are enforced by (10a), where the thermal limit
of the network is defined by a maximum power rating Θ.
This could be easily extended to multiple transformers if the
network considered has multiple voltage levels – the sum over
i just needs to only include nodes under the transformer in
question. Branch constraints are enforced by (10b), where the
matrix F uses a loss-less approximation to map injections
to branch flows, as described in [36]. Voltage constraints
are enforced using (10c) where a linear approximation of
the power flow constraints has been used to maintain a
MILP formulation. The matrix M maps load injections to
bus voltages. Although multiple such approximations exist, we
suggest using [37], given that it is applicable to unbalanced
three-phase distribution networks.
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C. Direct Control Benchmark

In order to compare the action of the the proposed method
to direct control from aggregators, we define the following
benchmark method. We assume that a controller has direct
control over the devices which have chosen to participate in
DR (but no visibility or control over those who have opted-
out). Here we use a modified version of the objective (7):

f(x) = ∆t

Nt∑
t

(
λt

∑
j

x
(j)
t p(j) +

∑
s

κ(s)σ
(s)
t

)
, (11)

where the controller can directly choose x, so we have replaced
x̂ with x and removed the c term. Rather than the constraints
defined in the previous section, we can apply the constraints
(2)–(5) from the device MPC controllers, given that the
controller knows the device constraints. Plus the distribution
constraints (11) with the true rather than estimated values of
x. We maintain the soft distribution constraint because for
consistency we assume that the aggregator prioritizes meeting
consumer demand over the distribution constraints.

IV. CONSTRAINT ROBUSTNESS GUARANTEE

In the proposed formulation all distribution constraints are
linear with device consumption. Therefore we can say that we
can express any violation of constraint s at time t as:

σ
(s)
t = C + k(1)x

(1)
t + k(1)x

(2)
t · · ·+ k(Nj)x

(Nj)
t , (12)

where C is a constant and k(j) is a continuous variable
describing the impact of x

(1)
t on σ

(s)
t . The value of k will

vary based on the constraint. For example, for transformer
constraints k(j) = p(j), the rated power of the device. Whereas
for branch and voltage constraints the value of k will depend
on the properties of the network. Given that the controller can
not forecast future arriving devices and has only estimates for
device parameters, it is not possible to place bounds on the
values of σ(s)

t . However, we can place bounds on the controller
response to a constraint violation. In other words, given some
strictly positive σ

(s)
0 , can we place bounds on the controller

response σ
(s)
0 − σ

(s)
1 . From (12) it follows:

σs
0 − σs

1 =
∑
j

k(j)(xj
0 − xj

1) , (13)

The expression (xj
0−xj

1) can take one of three values: −1, 0, 1.
Therefore, if all devices have flexibility and opt into DR the
maximum reduction is given by:

σs
0 − σs

1 =
∑

j∈J+
on

k(j) −
∑

j∈J−
off

k(j) (14)

where J +
on is the set of devices with k(j) > 0 which are on at

t = 0, and J−
off is the set of devices with k(j) < 0 which are

off at t = 0. The benchmark method, which has direct control
of x, will achieve this reduction if the device constraints are
not binding. Recall that the proposed method controls devices
indirectly with price adders ξ

(i)
t . Intuitively we can see that

the proposed method can achieve the same outcome as the
benchmark if it can set ξ

(i)
1 ≫ ξ

(i)
0 ∀j ∈ J +

on and ξ
(i)
1 ≪

ξ
(i)
0 ∀j ∈ J−

off . This will be possible under two conditions:
(1) there exists a unique i for each j, i.e. the controller sends
a different signal to each device, (2) the equity constraint (8a)
is not binding. If these conditions are met then the proposed
method can reduce constraint violations within one time step
as effectively as the benchmark. It should be noted that this
robustness guarantee is with respect to the linear constraints;
for voltage and branch bound constraints the accuracy of the
robustness condition is limited by the accuracy of the power
flow linearization.

V. SIMULATION PLATFORM

We implemented the proposed method, alongside the bench-
mark with an agent-based formulation in Pyomo [38] – an
optimization toolkit in Python that allows you to formulate
optimization problems using various solvers. We have tested
the platform using CPLEX [39], but the Pyomo framework
allows for other mixed-integer linear programming (MILP)
solvers to be used. MILP problems are a standard form
and a variety of industry solvers are available which can be
used to solve them. While the continuous relaxation (LP) are
convex and will converge to a guaranteed global optimum, the
mixed-integer variables introduce non-convexity. Therefore,
solvers typically use a combination of branch-and-bound and
heuristics to sequentially find a solution.

We are happy to release our simulation platform
and all required data as open source, available at:
https://github.com/constancecrozier/robustDR. The simula-
tions in this paper were run on a MacBook Pro with a 2.0GHz
quad-core Core i5 processor and 16GB of memory.

A. Computational Performance

Figure 4 shows the average time taken to compute price
signals using a 5m resolution as the number of devices
and time horizon grows. Deadline-driven devices are fast
to converge; 100 devices with 288 time-steps solves within
1 second. Thermal devices scale worse with time horizon
compared to deadline-driven devices. This is likely because
for thermal devices the thermal leakage over multiple hours
is more complex to calculate – whereas for deadline-driven
devices there is no time-dependant loss term to calculate.
This performance is consistent with the application because,
although the problem is centralized, the number of devices
is likely to remain small due to the nature of the problem
(local distribution level constraints). Note that if a larger
number of devices were present, a coarser time resolution (e.g.
30m instead of 5m) can counter-act the increased complexity.
Furthermore, the shown results includes no parallel processing,
which could accelerate the convergence.

VI. CASE STUDY

The proposed method was testing using case studies of
residential networks in the San Francisco area. Building
electricity data at 15 min resolution was taken from [40].
Local temperature and global horizontal irradiance at 10 min
resolution was taken from [41]. For real-time prices, we
used the LMP prices from the California Independent System
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Fig. 4: Time taken to compute price signals for a varying num-
ber of devices and varying time horizons (at 5m resolution)

p η ∆t Nt Θ κ M

7.0 0.9 1
12

288 30.0 106 106

TABLE I: The parameters used for Case Study 1

Operator (CAISO), for price forecasts we used the day-ahead
system price. Both datasets can be accessed at [42].

A. Case Study 1: 30 Homes with EVs

We consider a network with 30 homes which all have EVs,
and a transformer with a thermal rating of 30 kW. Charging
data was obtained from the Electric Nation charging trial [4],
which monitored the home charging over a multi-year period.
Both vehicles and households were randomly selected from the
available data. We assumed all chargers had a power rating of
7kW, and an efficiency of 90%. We used a planning horizon of
24 hours, and time intervals of five minutes. The parameters
of the case study are summarized in Table I.

In order to evaluate the action of our algorithm, we consider
three counterfactual scenarios to compare against. In the first
case we consider where the EV charging is uncontrolled,
meaning vehicles begin charging immediately when they are
plugged in. The second case is top-down TSO controlled
charging, where the EVs act to minimize their charging cost
directly using the LMP prices. This case will give the lower
bound on charging cost using the LMPs, but does not take into
account local constraints. Finally, we consider direct control
from an aggregator who aims to minimize LMP charging cost
while respecting local constraints. Where all devices opt into
demand response, this final case will provide a lower bound
on the constraint violations which are possible with a rolling
horizon approach. The aggregator will have direct control over
all devices at once and perfect information about their end-
use requirements. However, unlike the proposed approach, this
method is not privacy-preserving.

First we consider the case where all EV owners select the
‘economy’ setting on their charger. We ran a simulation using
demand data and prices starting from 2021/01/02 0 : 00 and
continuing for a total of nine days. For controller estimates
of the device deadlines and energy consumption, we applied
Gaussian noise to the true values. The action of the proposed
method compared to the three other cases is shown in Fig.
5. The top plot shows a subset of the total power demand,
while the bottom plots show the charging costs and total
constraint violations respectively. For simplicity, we visualize
the summed violations rather than the individual constraint

violations. Any non-zero value will imply accelerated degra-
dation of network components which can be estimated using
a device specific model (e.g. [43]).

Fig. 5: A simulation with 30 EVs all opting into demand
response under (a) uncontrolled charging, (b) TSO led charg-
ing, (c) the proposed method, and (d) direct control via an
aggregator. The top plot shows the total power demand under
each scheme for a subset of the simulation. The bottom left
plot shows the average cost of charging (a proxy for TSO
response) and the transformer violations under each scheme.

As expected, we see that the top-down method results in
the lowest charging cost, while the direct method results in
the lowest constraint violation. The top-down method results
in by far the largest constraint violation – more than 50%
higher than in the uncontrolled case. This demonstrates a
classic case of the TSO-DSO conflict; by controlling charging
we have sacrificed natural diversity in charging behavior, thus
producing greater local constraint violation than if no action
were taken. The proposed method of adjusting the local prices
results in a 96% reduction in total constraint violations and a
8.4% increase in cost compared to the top-down case. This
is compared to a 98% and 8.2% in the direct control case.
Although this case satisfies the constraints derived in Section
IV, constraint violations are slightly higher in the proposed
case due to errors in device parameter estimates – as expected,
additional violations are resolved within one time step.

Next, we consider the case where not all consumers opt in
to DR. This is important because sometimes consumers may
want to prioritize their consumption, for example if they are
unsure when their EV will be next needed. Here we randomly
assigned 50% of EVs to the ‘economy’ setting and 50% to
the ‘priority’ setting. Figure 6 shows analysis of the same
simulation with this single difference. In this case, we find
that the proposed method actually results in lower constraint
violations compared to the direct control case. This is because
the aggregator has no visibility of the devices opting out of
DR, so they coordinate the EVs as though there are no other
smart devices on the system.

B. Case Study 2: 100 Homes with HVAC

Our second case study focused on homes with heating,
ventilation and air-conditioning (HVAC) systems that can
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Fig. 6: A similar simulation to the one shown in Fig. 5, but
with half of the devices opting out of demand response

pC ηC pH ηH r C k ∆t Nt Θ

0.35 −20 0.45 10 1
60

1.5× 107 5 1
12

72 75

TABLE II: The parameters used for Case Study 2

participate in DR. We model the HVAC as two smart devices:
one for heating and one for cooling. The building and device
parameters are summarised in Table II, where the superscripts
H,C are used to distinguish the heating and cooling devices
respectively.

For our case study we assumed 10 nodes, each with 10
buildings with smart HVAC connected to them. This means
that 10 devices receive the same signal from the controller,
whereas in the previous case study there was only one device
per grid node. We used temperature and demand data starting
from 2020/01/02 0 : 00 and ran a simulation of 48 hours
length. Each building had the same thermal parameters, but
different temperature bounds and initial temperatures – pro-
viding diversity between device requirements. The temperature
bounds were randomly generated, with lower bounds ranging
from 16◦C to 21◦C and upper bounds from 20◦C to 24◦C. The
initial temperature for each building was randomly selected
between the chosen bounds. The results are shown in Fig. 7.

As with the EV case study, we see that the top-down
transmission pricing strategy results in worse violations than
the default case. In fact, in this case the diversity between
device requirements is sufficient to avoid almost all constraint
violations in the default strategy. However, we can see from
the direct control benchmark that a significant price reduction
(and hence TSO response) is possible while respecting the
distribution constraint. The proposed method achieves a near
optimal TSO price response, with similar constraint violations
as the default case. This is an impressive result, especially
given that the controller is forced to send the same signal to
ten devices at once. It is likely that the transformer constraint
violations could be further reduced if different control signals
were sent to each device.

Fig. 7: The results for a case study from 100 homes with smart
HVAC systems. Default: the devices act to minimize energy
consumption, Top-down: the devices minimize energy cost
using LMPs, Proposed: the proposed method where LMPs are
altered to protect constraints, Direct: aggregator based control
to minimize cost subject to network constraints.

C. Discussion

In order to observe the action of the controller, we consider
the output and control signal sent to a single building with both
an EV and HVAC system. Figure 8 shows the power demand,
controller estimates for c, and control signals throughout a 16
hour simulation. The bottom plot shows the controller signal
compared to the LMP prices. Note that both devices receive
the same control signal as they are at the same grid location.
It can be seen from the bottom plot that the controller chooses
a significantly more volatile signal than the transmission
prices. The controller signal generally exaggerates the LMP
signal, but in some cases opposes it. This is likely done to
coordinate the consumption of devices at this node with those
in other grid locations. The middle plot shows the controllers
estimate of c, the threshold price each device. Note that the
controller does not have an estimate for the EV while it is
disconnected. We can see that the EV is consistently more
price sensitive, having a lower value at which it will turn
on. This is reasonable, because the EV’s energy requirement
does not increase by shifting consumption, so the devices
pay no penalty for shifting demand. The only parameters
which must be chosen by the controller are the estimates
of the device requirements. A sensitivity analysis revealed
that for thermal devices the controller works relatively well
with naive estimates of temperature bounds. However, for
deadline-driven devices the performance drops significantly
with poor estimates of the device’s energy requirement. We
noticed that all instances of significantly increased violations
were in cases where Ê(j) was an underestimate. This is likely
because once the device has consumed the predicted energy
requirement Ê(j) the controller assumes that the device will no
longer consumer power. This means the controller no longer
attempts to control the device’s output and does not account
for its consumption in the distribution constraint. Conditional
adjustments to estimates based on observed behavior, and
purposefully conservative (over-)estimates could resolve this
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Fig. 8: Illustration of the action of the controller on a single
building with both an EV and HVAC. Top: resulting power
consumption, middle: controller estimated value of device
point, bottom: original and adjusted price signal.

issue.
In Fig. 9 we compare the methods presented in this paper

with two similar methods from the literature across four cri-
teria: the amount of flexibility exploited, robustness to distri-
bution constraints, consumer privacy, and computational cost.
We consider the method proposed by Ross and Mathieu [12],
which imposes constraints on aggregators in order to protect
the distribution network. Additionally we consider distribution
system marginal prices, first proposed by Papavasiliou [6],
where the prices will reflect the constraints of the local
distribution network. It can be seen that while the proposed
method is not the highest scoring in any of these single criteria,
it balances all objectives reasonably. The top-down method
scores extremely well in flexibility exploitation, complexity,
and privacy but offers no protection to distribution system
constraints. The direct control benchmark achieves the theo-
retically optimal trade-off between flexibility and distribution
constraint protection. However, it requires consumers to share
sensitive information and the centralized formulation means
the computational complexity grows poorly with number of
devices. The method proposed in [12] protects distribution
system constraints in a more computationally efficient manner,
but still uses aggregators so consumers must still communicate
device requirements. The locational pricing method protects
both privacy and distribution constraints, but is extremely
computationally intensive and does not directly maximize
flexibility.

VII. CONCLUSION

In this paper we have developed a demand response (DR)
framework for coordinating TSO and DSO objectives that
preserves the privacy of residential consumers. Under this
paradigm, the DSO controller generates a control signals to
send to each distribution node which incentivize devices to

Fig. 9: A radar chart showing a comparison of several methods
over: computational complexity, transmission level flexibility,
distribution constraint robustness, and consumer privacy.

align with TSO pricing, but cognizant of distribution con-
straints. We developed an open-source framework for testing
this control scheme with a variety of flexible devices, including
both electric vehicles and smart HVAC systems. We showed
that if a unique signal is sent to each device and the equity
constraint is not binding, constraint violations will be resolved
within one time step. Using case studies, we demonstrate
that the proposed method achieves close to the direct control
benchmark in the case where all devices participate in demand
response. Furthermore, we show that the proposed method can
actually surpass the direct control benchmark when not all
devices opt-in to DR.

APPENDIX

We start with the original equation for heat change (4). Then
we assume the building is being held at it’s temperature bound
so T

(j)
t+1 = T

(j)
t = T

(j)
min, giving:

0 =
(T out

t − T
(j)
min

R(j)C(j)
+

k(j)

C(j)
It −

η(j)

C(j)
x
(j)
t p(j)103

)
3600∆t

(15)
Then we make the simplification that the irradiance term is
zero, for heating this will result in a conservative estimate as
the overall heat loss will be overestimated

0 =
(T out

t − T
(j)
min

R(j)C(j)
+

η(j)

C(j)
x
(j)
t p(j)103

)
3600∆t (16)

We can rearrange the equation to solve for power loss:

x
(j)
t p(j) =

T
(j)
min − T out

t

R(j)η(j)
10−3 (17)

Finally, we inflate the cost by the energy loss so we multiply
by the amount of time until the end of the horizon ∆t(Nt−t).
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