
Spatial Arbitrage through Bidirectional
Electric Vehicle Charging

Constance Crozier, Aisling Pigott, and Kyri Baker
University of Colorado Boulder

Boulder, CO, USA
{constance.crozier, aisling.pigott, kyri.baker}@colorado.edu

Abstract—Energy arbitrage is typically a temporal process -
buying energy when prices are low, and selling when prices are
high. However, the spatial variation in electricity prices could
generate additional revenue streams if energy were transported
to locations with deficits in cheap energy, providing valuable grid
services such as congestion relief. In this paper, we develop de-
terministic and single-stage stochastic optimization frameworks
which maximize revenue by optimizing the charging, discharging,
and travel of an electric vehicle under spatial and temporal price
uncertainty. The model is also capable of incorporating uncertain
traffic data. The results show the potential of bidirectional electric
vehicle charging as a mobile grid asset; however, only substantial
revenue is realized when prices between areas vary significantly
and can be forecast with high probability.

Index Terms—Arbitrage, locational marginal pricing, vehicle-
to-grid

I. INTRODUCTION

Traditional energy arbitrage has been performed with large-
scale market participants strategically buying and selling energy
at key times (e.g., buying during “off-peak” times and selling
during “on-peak” times). This is typically performed with
large stationary energy storage owned by large firms [1].
However, the landscape of energy arbitrage is changing due
to advancements in distributed energy resource capabilities
and new market mechanisms. In particular, recent years have
introduced the concept of mobile energy storage [2]. Here, we
focus on two factors with the potential to impact the landscape
of energy arbitrage from the perspective of individual electric
vehicle (EV) assets.

First, vehicle-to-grid (V2G) and the more specific vehicle-
to-building (V2B) technologies are proliferating rapidly and
allowing electric vehicles to play a more prominent role in
the energy system [3]. As a couple of examples of how far
bidirectional charging has come in recent years, in 2020,
Fermata Energy received UL 9741 certification, which covers
standards for discharging an EV to an electric power system.
In 2021, Ford announced that the top selling vehicle in the
U.S. would soon have an electric option capable of discharging
back to the power supply. Second, in 2020, the Federal Energy
Regulatory Commission (FERC) approved a historical rule,
Order 2222, allowing distributed energy resources to participate
in wholesale markets [4].

Previous work has shown that V2G can be cost-effective
in some scenarios [5]. Furthermore, some benefit to V2G
charging can be obtained at the transmission network scale [6],

Fig. 1. LMPs across ERCOT showing negative/very low prices in southern
Texas and prices exceeding $500/MWh near Austin. ERCOT can have real
time prices up to and exceeding $9,000/MWh. Source: [16]

distribution network scale [7], and in microgrids [8]. Various
works have proposed optimization strategies which will maxi-
mize profit of the electric vehicle in various market settings.
For example, trading in day-ahead and intra-day electricity
markets [9], providing frequency regulation [10], local energy
trading [11], and minimizing grid fluctuations [12]. Some also
consider the ability of the EV to participate in multiple grid
services [13]. However, these all consider the location of the EV
fixed, while in reality, electricity prices can vary significantly
over short distances, introducing more potential benefits. For
example, Fig. 1 shows a snapshot of the Electric Reliability
Council of Texas (ERCOT) nodal LMP map, demonstrating
the high spatial variance in LMP (negative LMPs within 50
miles of LMPs that are hundreds of dollars). This indicates that
additional owner benefits could be realized by incorporating
spatial characteristics.

Towards capitalizing on spatial price differences, some papers
have proposed vehicle charging optimization methods which
include joint optimization of vehicle routing [14], [15]. These
methods consider the traffic and uncertainty around charging
locations, but not the possibility of performing arbitrage (e.g.
only uni-directional charging is considered). Additionally, the
complexity of these methods is very high, due to the large
number of potential routes.

In attempts to combine the objective of arbitrage from
bidirectional EV charging with the ability of the EV as a



mobile energy storage device, this paper aims to analyze the
potential for energy arbitrage from a single resource (possibly
through an aggregator) to be a spatial (also called geographical)
arbitrage concept rather than just a temporal one. Spatial
arbitrage is performed in a variety of other markets, for example,
in the automotive industry when cars are purchased at a cheap
price in one geographical location, transported to another, and
sold at higher prices [17]. With locational marginal prices
(LMPs) varying in both time and space, and the introduction
of mobile energy storage, new opportunities for arbitrage
are worth considering. Such mobile energy storage has also
been considered at the transmission level with large quantities
of batteries performing spatio-temporal arbitrage [2]. In [2],
these benefits with utility-scale mobile energy storage utilizing
spatiotemporal LMP differences has been analyzed; however,
this analysis was performed under a deterministic problem
formulation and limited by a 10-mile driving radius.

This paper will develop a single-stage stochastic optimization
framework from the perspective of the EV owner which aims to
schedule charging, discharging, and departure times of an EV
travelling between two predetermined geographical locations.
The problem is formulated as a stochastic mixed-integer linear
program, which can be solved efficiently with standard existing
optimization solvers. Uncertainty in both electricity price and
travel time will be included in the formulation. A case study
will be performed in the ERCOT real time market for an EV
traveling back and forth from San Marcos, TX, to Austin, TX,
throughout the period of a month.

II. PROBLEM FORMULATION

Multiple assumptions are made in this preliminary study.
First, the EV is constrained to only travel between two points
(however, there is no requirement that the EV has to travel;
the option for solely temporal arbitrage is a subset of the
optimization problem). The travel origin and destination points
are predetermined and are not variables in the optimization
problem. Second, the EV is restricted to one trip between
origin and destination per day, and the location the EV ends
the day at must be the starting location of the EV for the
next day in the simulation. Charging is also assumed to be
100% efficient. This last assumption can simply be removed
with the inclusion of separate variables for charging and
discharging the EV; however, for simplicity here, we assume a
single charging/discharging variable. Note however, that the
framework can be extended to incorporate autonomous vehicles
that have additional energy storage onboard. The inclusion
of more complex battery management, degradation effects,
and charging strategies is an important consideration for the
economics and technical impacts of V2G [18] and can be
considered as a direction of future work.

Thus, the single-stage, mixed integer linear stochastic
program for scheduling the departure of a single EV from
location A to location B and the EV’s charging/discharging
behavior under price and travel uncertainty can be written as
the following:

min

T∑
t=1

E[x,y, ξAt , ξ
B
t ] =

1

K

T∑
t=1

K∑
k=1

ξAk,txt + ξBk,tyt

(1a)
s.t :

T∑
t=1

(xt + yt)∆t = EreqβT (1b)

T∑
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(1− αt − βt) ≥
1

K

K∑
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T travk · βT (1c)

α1 = 1. (1d)
αt ≤ αt−1, t = 2, . . . , T (1e)
βt ≥ βt−1, t = 2, . . . , T (1f)

αt + βt ≤ 1, t = 1, . . . , T (1g)
− αtPdmax ≤ xt ≤ αtPcmax , t = 1, . . . , T (1h)
− βtPdmax ≤ yt ≤ βtPcmax , t = 1, . . . , T (1i)

0 ≤ E0 +

t∑
τ=0

(xτ + yτ )∆t −
KEreq∑
k T

trav
k

(1− ατ − βτ )

≤ Emax, t = 1, . . . , T (1j)
αt, βt ∈ {0, 1}, t = 1, . . . , T (1k)

where the decision variables are within vectors x, y, α,
and β, each of length T . Variable xt represents the EV’s
charged (positive) or discharged (negative) power at location A.
Variable yt represents the EV’s charged (positive) or discharged
(negative) power at location B. Vectors α and β are comprised
of binary elements and indicate whether or not the EV is at
location A at a time t or location B at time t, respectively.

Uncertain parameters are the electricity price at each time
t = 1, . . . , T at location A and B, ξAt and ξBt , respectively, and
the travel time between points A and B, Ttrav . These uncertain
parameters are assumed to have a finite number of considered
realizations K and equal probability masses, although this can
be modified if one knows that certain scenarios are more likely
to be similar to the present situation, for example. Constant
input parameters are the timestep ∆t, maximum charging
(Pcmax) and discharge (Pdmax) rates, initial state of charge
E0, maximum state of charge Emax, and the energy that is
required to get from A to B Ereq.

The objective (1a) aims to minimize the expected cost to
charge and discharge the EV throughout the timeperiod T
(here, 24 hours with 15-minute timesteps); which maximizes
the expected profit from performing arbitrage (spatial and
temporal). Constraint (1b) aims to ensure that the total energy
discharge throughout the day equals the total energy charged
throughout the day. Constraint (1c) ensures that βt remains
zero until Ttrav steps after the vehicle has departed location
A. The vehicle is assumed to start at location A in the first
timestep, which necessitates constraint (1d); once the vehicle
has left A, it is not able to return to A within that same day
(constraint (1e)); once the vehicle has arrived at B, it must stay
at B until the end of the day (constraint (1f)), and the vehicle



Fig. 2. Historical real time market settlement point prices for March 2020 in
the AEN and South Load Zones.

cannot simultaneously be at points A and B (constraint (1g)).
Constraints (1h) and (1i) describe the charging and discharging
limits at locations A and B, respectively, given by the available
bi-directional charger at those locations. Lastly, constraint (1j)
ensures that the EV state of charge does not go outside of the
given minimum and maximum bounds.

III. SIMULATION RESULTS

We consider the months of January, March, and July 2020 in
our simulations. 15-minute historical zonal pricing data from
the South and Austin Energy (AEN) load zones are used for
the electricity prices in San Marcos and Austin, respectively,
as shown in Fig. 2 for March. As a single EV is a small
energy resource, we assumed that the EV must buy and sell
energy at zonal prices (which average prices across all nodes
in that zone) rather than nodal prices, which have much higher
levels of variability but are typically used by larger and more
centralized resources.

Since we were unable to find publicly available historical
traffic data for this region, we utilized fifteen minute “typical
traffic” data for each weekday from Google maps, which is
based on historical traffic patterns. See Fig. 3 for the distance
between San Marcos and Austin and an example of Google
Maps’ typical traffic feature. Across the entire month, when
the EV chooses to perform spatial arbitrage, the EV then starts
the next day at that location. Lastly, the EV modeled was a
Tesla Model S with 100 kWh battery capacity, access to DC
Fast Charging stations (50 kW), with the assumption that these
stations can perform bidirectional charging at the same rate.
The initial state of charge of the EV is set to be 70 kWh, and
the rate of discharge while driving was assumed to be 1 kWh
per every 4 miles travelled.

Lastly, the framework was implemented in Python using
CVXPY [19] and the Gurobi solver [20]. The simulations were
performed locally on a 2017 MacBook Pro with 16 GB of
RAM and a 2.3 GHz Intel Core i5. Each optimization took
less than a minute to run.

A. Perfect information / Deterministic case

First, we analyze the best case scenario for the EV —
when prices and travel times from San Marcos and Austin
are known exactly. The “perfect information” formulation of

Fig. 3. The two considered cities and roughly 30 mile travel distance. Traffic
data was obtained from Google Maps’ typical traffic estimates for each day
and time.

Fig. 4. State of charge of the EV across one scenario. The EV partially
discharges at San Marcos before charging up for its journey to Austin, where
it both buys and sells energy.

(1) for determining the decisions within a single day of driving
is given by

min

T∑
t=1

cAt x
t + cBt y

t

s.t :

T∑
t=1

(1− αt − βt) ≥ T trav · βT

(1b), (1d)− (1j)

where T trav is a natural number representing the nearest
number of 15-minute timesteps from A to B and cAt and
cBt are the exact hub prices at time t and locations A and B,
respectively.

Figure 4 shows the state of charge and location of the EV
throughout one of these considered days (a day where the EV
makes approximately $40). Interestingly, in addition to spatial
arbitrage, the EV also performs temporal arbitrage once it is
parked in Austin. After discussing the stochastic case in the
next subsection, the results for both cases will be tabulated
and discussed.

B. Stochastic case

Using the formulation given in (1), where the number of
considered scenarios K is equal to the number of the days
in that month minus one (all other days of the month are
considered except for the day for which decisions are being



TABLE I
PROFIT FROM SPATIAL ARBITRAGE FOR THREE MONTHS

Month Assumption Monthly
Revenue

Best
Daily
Profit

Worst
Daily
Profit

Travel
Days

Jan Perfect
Information $128.81 $31.78 $0.86 14

Jan Stochastic $6.79 $12.78 -$13.33 15

March Perfect
Information $345.33 $78.27 $1.11 14

March Stochastic $6.45 $7.04 -$7.78 30

July Perfect
Information $168.43 $40.38 $0.68 12

July Stochastic $16.52 $6.20 $3.23 15

planned for), we now analyze the performance of the EV
scheduling algorithm when the prices and traffic patterns are
not known a priori.

As seen in Table I, over all of the considered months
and cases, arbitrage results in an overall positive monthly
profit. However, the impact of the uncertainty is clear — the
profit obtained in the cases where there is no uncertainty is
significantly higher than in the stochastic cases. In fact, some
of the cases in the stochastic scenario result in days where the
EV loses money, whereas in the perfect information cases, the
EV always makes a profit (even if some days there is not much
money to be made from arbitrage). This likely indicates our
framework is overly simplistic and should perhaps consider a
two-stage scenario-based approach, a receding horizon control
approach with price and traffic forecasting, or another more
sophisticated option.

C. Spatial vs. temporal arbitrage

Table I also lists the number of days in which the algorithm
determined that the EV should travel between the two consid-
ered cities, which is found to be generally around half of the
days in the month. As the framework allows for the EV to
perform in-place temporal arbitrage as well as spatial arbitrage,
it is interesting to analyze the benefit of the spatial component.
Towards this, we define the stochastic temporal-only arbitrage
problem as

min

T∑
t=1

E[x, ξAt ] =
1

K

T∑
t=1

K∑
k=1

ξAk,txt (3a)

s.t :
T∑
t=1

xt∆t = 0 (3b)

− Pdmax ≤ xt ≤ Pcmax , t = 1, . . . , T (3c)

0 ≤ E0 +

t∑
τ=0

xτ∆t ≤ Emax, t = 1, . . . , T (3d)

where the new objective (3a) is now only a function of the
price at location A and the charging/discharging power at
location A. Constraint (3b) still ensures that the net power
charged/discharged throughout the day is zero, resulting in the

TABLE II
PROFIT FROM STATIONARY ARBITRAGE IN MARCH 2020

Stationary Location Assumption Monthly Revenue
San Marcos Perfect Information $293.44
San Marcos Stochastic $3.05
Austin Perfect Information $293.84
Austin Stochastic $1.32

EV returning to the same state of charge as it started with at the
beginning of the day. Lastly, constraint (3d) is now modified
to enforce the state of charge bounds without the discharging
induced from driving.

It is worth noting that driving the EV to perform arbitrage
has costs not explicitly accounted for in the present formulation,
such as battery degradation [18]. Additionally, driving the EV,
of course, decreases the state of charge of the battery. Thus,
the price differential between two areas must be beneficial
enough to actually warrant moving the EV throughout the
day (an aggregator managing a fleet of EVs could perhaps
harness additional geographical diversity). Here, while we do
not provide a detailed formulation about the long-term costs
to the vehicle from driving, we perform a brief analysis on
the difference between an arbitrage formulation where the EV
remains stationary and the cases above where the EV is allowed
to move to one other location, once per day.

In Table II, the month of March is considered for the
comparison of the perfect information and stochastic stationary
arbitrage schemes. While every case results in a positive
monthly revenue, every case also performs worse than the
spatial arbitrage case. In particular, even the perfect information
case receives 15% less revenue. This is intuitive, since the
spatial arbitrage case contains the stationary case as a subset
— the EV always has the option of staying in its origin city
and not traveling to its destination city.

D. The impact of price variability

Even in the cases where perfect information is given to the
EV, the monthly profits vary wildly — $128.81 in January,
$345.33 in March, and $169.43 in July. Visually analyzing the
LMPs from March (Fig. 2), January (Fig. 5), and July (Fig. 6),
it is challenging to immediately determine what would cause
such differences. March does seem to have a greater number
of large price spikes, however, January has spikes which reach
a higher magnitude overall. These spikes are generally over a
short timeframe, which makes them hard to take advantage of
without perfect information.

Considering the benefit from spatial arbitrage comes from
differences in prices across the two zones, we next looked
at the difference in these prices, shown in Fig. 7. The two
months with the largest profit from spatial arbitrage are also
the two months with the largest difference in prices between
the two areas across time. Whereas, the month of January has
the lowest number of days in which the EV decides to travel
(from Table I), the lowest level of price variation between areas,
and results in around a third of the profit of March, the month
with the most variation.



Fig. 5. Historical real time market settlement point prices for January 2020
in the AEN and South Load Zones.

Fig. 6. Historical real time market settlement point prices for July 2020 in
the AEN and South Load Zones.

Fig. 7. Absolute difference in real time prices between the AEN and South
Load Zones for the three considered months.

IV. CONCLUSION AND FUTURE WORK

We provided a preliminary framework for electric vehicles
performing both temporal and spatial arbitrage. The single-stage
stochastic formulation included uncertainty in both electricity
price and travel times between two predetermined locations.
We found that, due to the averaging of zonal prices versus the
higher variation of nodal prices, the ability of the EV to make a
substantial profit is highly dependent on the the EV to knowing
when price spikes will occur. The results are indicative of this
— the scenario where the EV has perfect knowledge of future
prices and traffic patterns results in significant cost function
reductions. Nevertheless, even in the stochastic case, the scheme
still produces positive revenue on nearly all considered days,
although sometimes the revenue is minimal.

Future work could include developing a computationally
efficient framework which allows the EV to travel to multiple
destinations, and multiple destinations within a single day.
Optimization across a fleet of EVs (e.g. through an aggregator)
could also be considered to introduce heightened diversity into
the considered financial portfolio. Incorporating the cost of
battery degradation is also an important financial consideration.
The 30 mile distance from the two considered locations in the
case study had a relatively small variation in traffic delays,
but the inclusion of a wider radius of destinations would
likely introduce a higher level of stochasticity. One of the

most important directions of future work is incorporating more
intelligent price forecasting and predictive optimization rather
than day-ahead scheduling, which, as shown in this paper, can
severely impact the efficacy of arbitrage. Lastly, two-stage,
rather than single-stage stochastic optimization, would also
likely improve the performance of the algorithm.
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